

Phenolic Characterization of Malbec Wines from Mendoza Province (Argentina)

Martín Fanzone,*,† Álvaro Peña-Neira,[‡] Viviana Jofré,† Mariela Assof,† and Fernando Zamora[§]

[†]Laboratorio de Aromas y Sustancias Naturales, Estación Experimental Agropecuaria Mendoza, Instituto Nacional de Tecnología Agropecuaria (INTA), San Martín 3853, 5507 Luján de Cuyo, Mendoza, Argentina, [‡]Departamento de Agroindustria y Enología, Facultad de Ciencias Agronómicas, Universidad de Chile, Casilla 1004, Santiago, Chile, and [§]Departamento de Bioquímica y Biotecnología, Facultad de Enología de Tarragona, Universidad Rovira i Virgili, C/ Marcel.li Domingo s/n, 43007 Tarragona, Spain

Malbec is a wine grape variety that is now mainly produced in Mendoza and considered to be the emblematic cultivar of Argentina. Forty-four phenolic compounds, including hydroxybenzoic and hydroxycinnamic acids and different flavonoids, were identified and quantified in 61 monovarietal Malbec wines from 11 geographical zones of Mendoza province, using a reversed phase high-performance liquid chromatography system coupled to a diode array detector (HPLC-DAD). Among non-flavonoids, gallic, *cis*-caftaric, *trans*-coutaric, and caffeic acids presented the higher concentrations in all of the samples, whereas *trans*-resveratrol glucoside was present at concentrations from 0.6 to 1.3 mg/L. For the flavonoids, (+)-catechin and (-)-epicatechin presented the higher concentrations among flavan-3-ols with a ratio (+)-catechin/(-)-epicatechin from 1.3 to 2.1. An astilbin derivative and quercetin presented the higher concentrations for flavonols, whereas malvidin-3-glucoside and its derivatives were the major anthocyanins. For the first time the phenolic composition of Malbec wines from Mendoza province has been characterized.

KEYWORDS: Phenolic compound; Malbec; Mendoza; high-performance liquid chromatography; Argentina; wine

INTRODUCTION

Argentina is a New World wine producer and consumer country in the southern hemisphere, with 225846 ha of vineyards representing $\sim 3\%$ of the global winegrape cultivation area. Mendoza province has $\sim 70\%$ of all Argentinean vineyards, with 158833 ha. In Mendoza, there are around 22000 ha of Malbec (*Vitis vinifera* L.) vines, which account for 80% of the cultivated area for that variety in the country and $\sim 28\%$ of total red wine grape production in Mendoza (1,2). This middle-maturing grape variety, of French origin, is well adapted to the soil and dry climate of Mendoza and produces wines with very deep color and high tannin concentration, with a fruity aroma and a particularly plum-like flavor. Today, Malbec is considered to be the emblematic cultivar of Argentina (3).

Phenolic compounds are one of the most important quality parameters of wines, and they contribute to organoleptic characteristics such as color, astringency, and bitterness. These compounds are also active in biochemical processes and have nutraceutical effects on human health, including antimicrobial, anticarcinogenic, and antioxidant properties (4-6). Additionally, phenolic compounds have been suggested as chemical markers to confirm cultivar authenticity and geographical origin in grapes

and wines. In past years, the cultivar-characteristic profiles of monomeric anthocyanins have been widely used for the classification and differentiation of grape cultivars and monovarietal wines (7-9).

The phenolic profile of a wine depends on the grape variety, the geographical location of the vineyard, factors that affect the berry development (e.g., soil, weather, viticultural practices, etc.), grape maturity (10, 11), and the winemaking techniques (12-14). The variation in phenolic composition among cultivation areas can be explained by the fact that the phenylpropanoid pathway enzymes are highly influenced by temperature and light, factors that also affect the photosynthetic process, which provides the biosynthetic precursors (mainly sugars) necessary for synthesis of phenolic compounds (15-17).

To our knowledge, there is to date no published information on the phenolic composition of Argentinean Malbec wines. Considering this, the aim of this work was to study the non-flavonoid and flavonoid compositions of commercial wines of this cultivar from different zones of Mendoza province.

MATERIALS AND METHODS

Wine Samples. Sixty-one Malbec wines produced at commercial scale were collected in bottles (750 mL), at the end of malolactic fermentation, directly from the 23 collaborating wineries to ensure the varietal purity of the samples. The wine samples belonged to 11 different zones of Mendoza (Table 1): 5 samples of zone 1 (East (Santa Rosa, Rivadavia, San Martín,

^{*}Author to whom correspondence should be addressed (telephone 54-261-4963020; fax 54-261-4963320; e-mail mfanzone@mendoza.inta.gov.ar).

Table 1. Geographical Characteristics of Different Zones of Mendoza

zone	description	altitude (m asl ^a)	latitude	longitude
1	East	650	33° 05′ S	68° 28′ W
2	East Maipú	750	32° 58′ S	68° 45′ W
3	Maipú-Luján	910	33° 00′ S	68° 52′ W
4	West Luján	1000	33° 01′ S	68° 58′ W
5	Agrelo	970	33° 07′ S	68° 52′ W
6	Alto Agrelo	1100	33° 06′ S	68° 57′ W
7	Perdriel	940	33° 04′ S	68° 52′ W
8	Ugarteche	900	33° 13′ S	68° 52′ W
9	West Valle de Uco	1450	33° 24′ S	69° 17′ W
10	Center Valle de Uco	1050	33° 22′ S	69° 08′ W
11	San Carlos	1100	33° 43′ S	69° 07′ W

^am asl, meters above sea level.

and Junin)), 5 samples of zone 2 (East Maipú), 7 samples of zone 3 (Maipú-Luján), 5 samples of zone 4 (West Luján), 6 samples of zone 5 (Agrelo), 4 samples of zone 6 (Alto Agrelo), 5 samples of zone 7 (Perdriel), 6 samples of zone 8 (Ugarteche), 8 samples of zone 9 (West Valle de Uco), 5 samples of zone 10 (Center Valle de Uco), and 5 samples of zone 11 (San Carlos). All wines were pure monovarietals from the 2007 vintage. They were stored in darkness at 12–15 °C, and each wine bottle was opened immediately before the analysis.

Chemical Analyses. Total Phenols, Anthocyanins, Tannins, and Other Chemical Parameters. Absorbance measurements were made with a Perkin-Elmer UV—vis spectrophotometer model Lambda 25 (Perkin-Elmer Instruments, Hartford, CT).

Total phenols were determined by direct reading of the absorbance of the samples at 280 nm (18). Total phenols were expressed as milligrams of gallic acid equivalents per liter of sample (GAE, mg/L).

Total anthocyanins were measured by diluting wine samples with ethanol and hydrochloric acid. Briefly, two aliquots of this dilution were treated either with NaHSO₃ or with the same amount of water. Each aliquot was then analyzed at 520 nm (18). Total anthocyanins were expressed as milligrams per liter of malvidin-3-glucoside.

For total tannins, the analytical method applied was the acid butanol assay (19). This method is based on the acid-catalyzed oxidative cleavage of the C-C interflavanic bond of proanthocyanidins in butanol-HCl. Total tannins were expressed as milligrams per liter of catechin

Gelatin index (GI) was measured using the methodology described by Glories (20). To two tubes with 10 mL of wine was added 1 mL of distilled water (total tannin) or 1 mL of 70 g/L gelatin solution (tannin precipitated with gelatin). After 3 days, the samples were centrifuged at 3500 rpm for 10 min (Rolco CM4080, Buenos Aires, Argentina). The supernatants were assayed to determine the tannin concentration (19). Gelatin index (%) was expressed as the relationship between tannin residual (difference among total wine tannin concentration and tannin after gelatin precipitation) and total tannin concentration.

Other chemical parameters measured in the samples were pH (by Altronix equipment TPX-1, Buenos Aires, Argentina), titratable acidity (g/L of tartaric acid) (21), degree of polymerization of condensed tannins (DMACH, p-dimethylaminocinnamaldehyde assay) (22), color intensity (CI), and hue values (23).

HPLC-DAD Analysis of Anthocyanins. The chromatographic system consisted of an HPLC equipped with a photodiode array detector model L-7455, intelligent pump model L-6200, and autosampler model L-7200 (Merck-Hitachi, Darmstadt, Germany). Separation was performed on a reverse-phase Nova-Pak C_{18} column (150 mm × 3.9 mm i.d., 4 μm) at room temperature (Waters Corp., Milford, MA). A gradient consisting of solvent A (water/formic acid, 90:10, v/v) and solvent B (acetonitrile) was applied as 0–23 min, 96–85% A and 4–15% B; 23–27 min, 85–80% A and 15–20% B; 27–43 min, 80–70% A and 20–30% B and followed by washing (methanol) and re-equilibration of the column. The flow rate was 1.1 mL/min from 0 to 23 min and 1.5 mL/min from 23 to 43 min. One hundred and fifty microliters of wine, previously filtered through a 0.45 μm pore size membrane, was injected onto the column. Photodiode array detection (DAD) was performed from 260 to 600 nm (24). Quantification was carried out by area measurements at 520 nm, and the anthocyanin

content was expressed as malvidin-3-glucoside (Extrasynthese, Lyon, France), using a standard calibration curve.

HPLC-DAD Analysis of Low Molecular Weight Phenolic Compounds. An aliquot (50 mL) of wine from each bottle was extracted three times with 20 mL of ethyl ether and three times with 20 mL of ethyl acetate. The organic fractions were combined. The extracts were evaporated to dryness under vacuum at 30 °C. The residue was dissolved in 2 mL of methanol/ water (1:1, v/v) and then filtered through a 0.45 μ m pore size membrane, and 30 µL was injected into the HPLC-DAD system. The chromatographic system consisted of an HPLC equipped with a photodiode array detector model G1315B, quaternary pump model G1311A, and autosampler model G1329A (Agilent Technologies, Palo Alto, CA). A reversephase Nova-Pack C_{18} column (300 mm \times 3.9 mm i.d., 4 μ m) at 20 °C (Waters Corp.) was used for separation of the compounds. Two mobile phases were employed for elution: A (water/acetic acid, 98:2, v/v) and B (water/acetonitrile/acetic acid, 78:20:2, v/v/v). The gradient profile was 0-55 min, 100-20% A and 0-80% B; 55-57 min, 20-10% A and 80-90% B; 57-90 min, 10% A and 90% B isocratic, followed by washing (methanol) and re-equilibration of the column. The flow rate was 1.0 mL/ min from 0 to 55 min and 1.2 mL/min from 55 to 90 min. Detection was performed by scanning from 210 to 360 nm with an acquisition speed of

Qualitative and Quantitative Analysis. The identification of specific compounds was carried out by comparison of their spectra and retention time with those of standards. The standards were purchased from Sigma (St. Louis, MO): gallic, protocatechuic, syringic, p-coumaric, and caffeic acids; tyrosol, (+)-catechin, (-)-epicatechin, trans-resveratrol, myricetin, and quercetin. The flavonol glycosides, myricetin glycosides, trans-resveratrol glucoside (piceid), hydroxycinnamic acid esters, and the procyanidins for which no standards were available were identified by their retention time and spectral parameters, as reported by Peña-Neira et al. (15, 24).

Quantitative determinations were made by using the external standard method with the commercial standards. The calibration curves were obtained by injection of standard solutions, under the same conditions as for the samples analyzed, over the range of concentrations observed. The compounds for which no standards were available were quantified with the curves of quercetin (flavonol glycosides, myricetin glycosides, and dihydroflavonols), trans-resveratrol (trans-resveratrol glucoside), caffeic acid (hydroxycinnamic acid esters and unknown compound), and (+)-catechin (procyanidins). All of the solvents were of HPLC grade and purchased from Merck (Darmstadt, Germany). All of the analyses were performed in duplicate.

Statistical Analysis. Means comparisons were analyzed by one-way analysis of variance (ANOVA) and Tukey's multiple-range tests (TMRT). A p < 0.05 was considered to be statistically significant. Canonical discriminant analyses (CDA) were performed to examine geographical differences in Malbec wines from Mendoza, using the chemical determinations, in which new variables, called canonical discriminant functions, were created to separate the zones. Statistical analysis was evaluated with Statgraphics Plus version 4.0 software (Copyright 1994–1999, Statistical Graphics Corp., Warrenton, VA).

RESULTS AND DISCUSSION

General Chemical Parameters. Table 2 presents the results of the general chemical parameters of the Malbec wines studied. Among all of the samples studied, titratable acidity varied from 5.1 to 6.1 g/L and pH from 3.5 to 3.8. These results show a low dispersion for these important parameters that influence not only the sensorial quality of wine but also the color intensity expression and the microbiology stability (21).

For all samples, total phenols ranged between 1932.0 and 3506.8 mg/L. These results are in agreement with those determined by Minussi et al. (25) for red wines from South America.

The total anthocyanins, color intensity, and hue values of the samples ranged from 261.1 to 802.8 mg/L, from 8.7 to 25.1, and from 48.4 to 65.4, respectively. The high dispersion of these results might be due to the influence of different factors (e.g., origin of wine samples or effect of agronomical and enological practices)

Table 2. Chemical Parameters (Mean \pm SD) of Commercial Malbec Wines $^{
m c}$

					geograph	geographical zones of Mendoza (Argentina)	ı (Argentina)				
parameter	1 (n = 5)	2 (n = 5)	3 (n = 7)	4 (n = 5)	5 (n = 6)	6 (<i>n</i> = 4)	7 (n = 5)	8 (<i>n</i> = 6)	9 (n = 8)	10 (n = 5)	Agric (9 = 1) 11
titratable acidity	$5.8\pm0.5\mathrm{a}$	5.4 ± 1.2 a	$5.6\pm0.6\mathrm{a}$	$6.1\pm0.3\mathrm{a}$	$5.3 \pm 1.3 \mathrm{a}$	$5.6\pm0.5\mathrm{a}$	6.1 ± 0.8 a	$5.1 \pm 1.1 a$	6.1 ± 1.1 a	5.6 ± 1.7 a	5.7 ± 1.5 a
(tartaric acid, g/L) pH	3.7 ± 0.2 a	3.6 ± 0.1 a	3.6 ± 0.2 a	3.5 ± 0.1 a	$3.7\pm0.2\mathrm{a}$	3.8 ± 0.1 a	3.5 ± 0.1 a	3.7 ± 0.1 a	3.6 ± 0.1 a	3.7 ± 0.2 a	3.5 ± 0.1 a
TA (malvidin-3-	$261.1 \pm 61.1 a$	462.8 \pm 94.2 ab	$575.6\pm130.1~\text{bc}$	$631.3 \pm 96.1 \mathrm{bc}$	$566.8 \pm 123.6 \text{ bc}$	$656.9 \pm 201.3 \mathrm{bc}$	$534.5 \pm 165.2 \text{ abc}$	619.8 \pm 99.4 bc	$802.8 \pm 213.6 \mathrm{c}$	$608.8\pm58.0~\text{bc}$	$614.1 \pm 185.0 \text{ bc}$
glucoside, mg/L)	-	-	0	- 1	-	- L	- - - 11		-	11	
OI (A420 nm +	8.7 ± 2.0 a	11.8 ± 2.5 a	14.9 ± 3.6 ab	19.5 ± 4.4 ab	14.4 ± 2.1 ab	19.5 ± 9.2 ab	17.6 ± 8.0 ab	16.2 ± 3.2 aD	25.1 ± 13.0 D	17.2 ± 5.7 ab	17.3 ± 7.8 ab
520 nm $+$ 620 nm) \times 10											
hue values	$65.4\pm10.7~\text{b}$	$54.6 \pm 4.9 \text{ ab}$	$54.8 \pm 6.2 ab$	$50.6 \pm 4.2 a$	$54.1 \pm 4.5 \text{ ab}$	56.5 ± 9.7 ab	$48.4 \pm 3.6 a$	$57.7 \pm 4.3 \text{ ab}$	$53.8 \pm 4.5 \text{ ab}$	54.1 ± 6.6 ab	$50.4 \pm 8.3 \mathrm{a}$
$(A_{420} \text{ nm/520 nm}) \times 100$. 4, 2
TP (GAE, mg/L)	1932.0 \pm 357.3 a		2170.8 \pm 404.5 a 2801.2 \pm 438.3 ab 2924.5 \pm 232.1 ab	2924.5 ± 232.1 ab	$2430.0 \pm 355.5 a$	3175.3 ± 539.1 ab	2722.9 ± 744.6 ab	2797.8 ± 411.3 ab	$3506.8 \pm 1080.1 \mathrm{b}$	$3506.8 \pm 1080.1 b 2947.9 \pm 481.2 ab$	2787.8 ± 528.4 ab
TT (catechin, mg/L)	3169.3 ± 780.3 ab	2782.9 ± 298.6 a	$3821.1 \pm 697.7 \text{ ab}$	$3990.1 \pm 1315.5 ab$	3139.7 ± 581.6 ab	4431.4 \pm 1339.2 ab	4067.7 ± 1145.7 ab	4162.6 ± 1036.6 ab	$4943.3 \pm 1525.1 \mathrm{b}$	4346.9 ± 982.8 ab	4291.4 \pm 1046.9 ab
DMACH	$10.6 \pm 1.0 a$	$11.6 \pm 1.3 \mathrm{a}$	$11.4 \pm 1.0 a$	$12.4 \pm 6.7 a$	11.9 ± 3.2 a	12.4 ± 2.2 a	$10.7 \pm 0.4 \mathrm{a}$	$10.7 \pm 2.0 \mathrm{a}$	$10.4 \pm 2.7 a$	9.9 ± 2.4 a	11.3 ± 3.8 a
GI (%)	$79.8\pm6.4~\text{ab}$	77.9 \pm 5.6 ab	$86.6 \pm 4.4 \mathrm{b}$	$72.9 \pm 10.9 \mathrm{a}$	$79.3\pm3.4~ab$	77.4 \pm 8.4 ab	$84.4\pm3.7~\mathrm{b}$	$84.3\pm2.5\mathrm{b}$	82.7 ± 3.8 ab	$80.5\pm3.9~\mathrm{ab}$	$84.0 \pm 2.4 \text{ ab}$
a Bosults of the s	a Beculte of the analytical methods used to determine the abandia characteristics of value	od to dotorimize the	phonolic characteris	ative of young red wip	or Molboofrom	lifforost tagos of Man	Sodtac letet AT ezob	and winner an Malkon from different source of Mandoss TA total orthonories Of calar interacting to total whenceles IT total transines OMACH diseases of	aoda lotot OT "dioa	ogiaact letet TT :olov	PMACH DOggood

DMACH, degree of TP, total phenols; TT, total tannins; bung red wines cv. Malbec from different zones of Mendoza. TA, total anthocyanins; Cl, color intensity, letters within the same row indicate significant differences (p < 0.05) according to a Tukey HSD test. phenolic characteristics of young red wines standard deviation. Different the analytical methods used to determine the polycondensed tannins; GI, gelatin index; SD, so polymerization of condensed tannins;

on the phenolic compounds, responsible for the color of the wines and related parameters.

Total tannin contents ranged between 2782.9 and 4943.3 mg/L. These concentrations are similar to those observed by González-Neves et al. (26) for Cabernet Sauvignon, Merlot, and Tannat wines from Uruguay.

The degree of polymerization of condensed tannins is the ratio between catechin and proanthocyanidin contents and is mainly dependent upon the cultivar and the chemical age of the wine (22). For all samples, the values for this parameter ranged from 9.9 to 12.4, indicating high degrees of condensation for the proanthocyanidins contained in these wines.

The GI is an analytical parameter for estimating astringency in red wine. For Malbec samples, the values for this index ranged between 72.9 and 86.6%. These values are higher than those described by Llaudy et al. (27) for wines from different Spanish Origin Denominations and show high tannin reactivities for all of the wines studied. These results could be because the samples were of young wines, without any fining treatment.

Anthocyanins and Pyranoanthocyanins. Anthocyanins are water-soluble pigments present in red grape skins, which partition into the wine during vinification. The monomeric forms are responsible for most of the red color of young wines, and they contribute to the development of red polymeric pigments during wine aging (28).

Glycosylated and acylated (acetyl and *p*-coumaroyl derivatives) anthocyanins, as well as pyranoanthocyanins, were identified by HPLC-DAD. **Table 3** summarizes the individual anthocyanin and pyranoanthocyanin concentrations in Malbec wines. **Figure 1** shows a chromatographic profile of these compounds in the wines analyzed.

Concentrations of monoglucosylated anthocyanins in Malbec samples ranged from 12.0 to 67.8 mg/L for delphinidin-3-glucoside, from 1.6 to 15.5 mg/L for cyanidin-3-glucoside, from 17.7 to 83.5 mg/L for petunidin-3-glucoside, from 3.5 to 23.5 mg/L for peonidin-3-glucoside, and from 189.9 to 408.8 mg/L for malvidin-3-glucoside.

The concentrations for acetylated anthocyanins found in the wine samples ranged from 2.9 to 11.0 mg/L for delphinidin-3-(6-acetyl)glucoside, from 2.7 to 19.2 mg/L for cyanidin-3-(6-acetyl)glucoside, from 1.9 to 7.7 mg/L for petunidin-3-(6-acetyl)glucoside, from 6.4 to 10.8 mg/L for peonidin-3-(6-acetyl)glucoside, and from 32.9 to 68.7 mg/L for malvidin-3-(6-acetyl)glucoside.

In the case of coumaroyl derivatives, the concentrations ranged from 0.7 to 5.3 mg/L for delphinidin-3-(6-p-coumaroyl)glucoside, from 0.6 to 5.2 mg/L for cyanidin-3-(6-p-coumaroyl)glucoside, from 0.4 and 2.0 mg/L for petunidin-3-(6-p-coumaroyl)glucoside, from 1.3 to 4.8 mg/L for peonidin-3-(6-p-coumaroyl)glucoside, and from 19.3 to 31.8 mg/L for the malvidin-3-(6-p-coumaroyl)glucoside.

Anthocyanin-derived pigments, such as vitisins, are of interest for winemakers because they have high stability during the aging of red wines. These pyranoanthocyanins are more resistant to elevated pH values and bisulfite bleaching than anthocyanins, and they present an orange-red color; these compounds are responsible for deeper colors than other pigments at the typical pH of wine (29). **Table 3** shows that all wines contained vitisin B (6.9–37.1 mg/L), but only the wines from zones 4, 5, 6, 10, and 11 contained vitisin A (9.8–16.1 mg/L). The differences observed in the vitisin concentrations could be related with the winemaking conditions (9), which could influence mainly the formation of vitisin B and in some cases of vitisin A.

Low Molecular Weight Phenolic Composition. Table 4 shows the individual concentrations of the different non-flavonoids (hydroxybenzoic and hydroxycinnamic acids, *trans*-resveratrol

Table 3. Anthocyanins Quantified [Mean $(mg/L) \pm SD$] in Commercial Malbec Wines from Different Geographical Origins of Mendoza^a

						goeg	geographical zones of Mendoza	endoza				
peak	punodwoo	1 (n = 5)	2 (n = 5)	3 (n = 7)	4 (n = 5)	5 (n = 6)	6 (<i>n</i> = 4)	7 (n = 5)	8 (<i>n</i> = 6)	9 (n = 8)	10 (<i>n</i> = 5)	11 (<i>n</i> = 5)
-	delphinidin-3-glucoside	12.0±7.0a	17.3±14.6a	25.1 ± 6.8 a	$61.5 \pm 39.5 \mathrm{a}$	29.1 ± 14.8 a	46.6 ± 23.0 a	$31.4 \pm 25.0 \mathrm{a}$	$27.2 \pm 14.3 \mathrm{a}$	$67.8 \pm 62.3 \mathrm{a}$	52.9 ± 22.4 a	$50.0 \pm 32.9 \mathrm{a}$
2	cyanidin-3-glucoside	11.5±9.9a	6.8 ± 4.1 a	7.9±7.4a	4.2 ± 3.3 a	$7.2 \pm 6.3 a$	$14.1 \pm 12.1 a$	13.1 ± 8.5 a	7.8±7.4a	$15.5 \pm 20.9 \mathrm{a}$	$10.1 \pm 12.6 \mathrm{a}$	1.6±1.7a
က	petunidin-3-glucoside	$17.7 \pm 16.5 a$	$37.9 \pm 12.5 a$	$50.4 \pm 14.9 \mathrm{a}$	71.1 \pm 26.9 a	$50.9 \pm 18.5 a$	$83.5 \pm 45.4 a$	$53.0 \pm 33.4 \mathrm{a}$	$34.5 \pm 26.9 \mathrm{a}$	$82.1 \pm 67.4 a$	$58.4 \pm 17.2 a$	$61.7 \pm 37.8 a$
4	peonidin-3-glucoside	3.5±2.7a	$8.0 \pm 7.2 a$	$19.0 \pm 10.2 a$	$16.5 \pm 5.6 a$	$14.7 \pm 5.3 a$	$22.7 \pm 22.2 \mathrm{a}$	15.9±11.6a	7.9 ± 6.2 a	$23.5 \pm 23.7 a$	10.8±2.7a	10.4 ± 8.2 a
2	malvidin-3-glucoside	$189.9 \pm 42.9 \mathrm{a}$	$265.9 \pm 74.7 a$	$320.5 \pm 95.9 \mathrm{a}$	$349.9 \pm 131.2 a$	$369.4 \pm 47.1 \mathrm{a}$	$408.8 \pm 149.5 a$	$308.9 \pm 155.0 \mathrm{a}$	$283.0 \pm 148.0 \mathrm{a}$	$340.8 \pm 171.0 \mathrm{a}$	$384.4 \pm 42.2 a$	$315.6 \pm 131.3 a$
	total glucosylated	$234.6(73.3^{b})$	335.9 (72.7)	422.9 (77.5)	503.2 (75.0)	471.3 (73.6)	575.7 (75.4)	422.3 (77.0)	360.4 (77.3)	529.7 (76.8)	516.6 (74.4)	439.3 (73.6)
۸A	vitisin A	pu	pu	pu	13.5	8.6	16.1	pu	pu	pu	15.1	13.7
۸B	vitisin B	$6.9 \pm 4.0 a$	$10.6 \pm 5.3 a$	$14,1 \pm 5.0 a$	$33.2 \pm 22.6 \mathrm{a}$	$24.6 \pm 9.1 a$	$35.3 \pm 3.9 \mathrm{a}$	$18.3 \pm 18.5 a$	9.7 ± 7.6 a	$27.7 \pm 18.1 a$	$28.6 \pm 23.9 \mathrm{a}$	$37.1 \pm 20.3 \mathrm{a}$
9	delphinidin-3-(6-acetyl)glucoside	6.1 ± 4.1 a	$2.9 \pm 3.4 a$	$8.9 \pm 6.2 a$	$10.6 \pm 6.7 \mathrm{a}$	$7.3 \pm 7.6 a$	4.3±2.5a	11.0 ± 9.4 a	$6.9 \pm 5.8 a$	$11.0 \pm 10.2 \mathrm{a}$	7.6±5.8a	$6.6 \pm 4.6 \mathrm{a}$
7	cyanidin-3-(6-acetyl)glucoside	$2.9 \pm 3.2 a$	$6.7 \pm 7.3 a$	$7.3 \pm 3.5 \mathrm{a}$	11.0 \pm 9.5 a	$6.5 \pm 4.1a$	6.6±2.8a	$6.2 \pm 5.0 a$	2.7±1.8a	$19.2 \pm 28.6 \mathrm{a}$	$7.6 \pm 8.8 a$	4.8±7.1a
œ	petunidin-3-(6-acetyl)glucoside	$4.5 \pm 6.4 a$	$7.7 \pm 13.6 a$	1.9±2.4a	2.4±1.7a	$7.7 \pm 14.8 a$	2.1±1.2a	$2.5 \pm 2.5 a$	2.6±2.6a	$5.0 \pm 7.1 a$	4.6±5.6a	$4.0 \pm 4.0 a$
6	peonidin-3-(6-acetyl)glucoside	$6.5 \pm 5.6 a$	$7.0 \pm 3.9 a$	7.9 ± 4.0 a	$7.6 \pm 3.7 a$	$8.8 \pm 4.3a$	$10.8 \pm 6.3 a$	$10.3 \pm 7.1 a$	$6.4 \pm 4.2 a$	9.2 ± 7.3 a	$6.9 \pm 1.5 a$	7.3 ± 3.9 a
10	malvidin-3-(6-acetyl)glucoside	$32.9 \pm 9.4 a$	$53.8 \pm 24.8 \mathrm{a}$	$52.3 \pm 21.0 \mathrm{a}$	$51.6 \pm 21.1 a$	64.8±10.8a	$68.7 \pm 23.4 \mathrm{a}$	$46.2 \pm 25.1 \mathrm{a}$	$47.4 \pm 27.5 a$	$53.6 \pm 27.6 \mathrm{a}$	$68.1 \pm 12.7 \mathrm{a}$	$50.5 \pm 22.6 \mathrm{a}$
	total acetylated	52.9 (16.5)	78.1 (16.9)	78.3 (14.3)	83.2 (12.4)	95.1 (14.8)	92.5 (12.1)	76.2 (13.9)	66.0 (14.2)	98.0 (14.2)	94.8 (13.7)	73.2 (12.3)
Ξ	delphinidin-3-	$2.9 \pm 3.0 a$	4.2±4.4a	$0.7 \pm 0.6 a$	$5.0 \pm 4.2 a$	$2.0 \pm 1.6 a$	5.3 ± 8.4 a	$0.7 \pm 0.7 a$	1.2±1.7a	$2.7 \pm 4.9 a$	$2.3 \pm 0.1 a$	1.1±1.0a
	(6-p-coumaroyl)glucoside											
12	cyanidin-3-	$0.6\pm0.8\mathrm{a}$	$2.0 \pm 1.1 a$	$2.1 \pm 2.0 a$	$5.0 \pm 6.5 \mathrm{a}$	$5.2 \pm 6.1a$	1.0 ± 0.5 a	$1.8 \pm 2.8 \mathrm{a}$	3.0±1.8a	2.4 ± 2.4 a	1.9±2.2a	$5.2 \pm 3.6 a$
:	(6-p-coumaroyl)glucoside						1					
13	petunidin-3-	1.4±1.0a	1.2±0.4a	1.9±1.6a	1.0	0.6 ± 0.5 a	$0.7 \pm 0.7 a$	2.0±1.7a	1.5±2.4a	0.9 ± 0.6 a	$0.5\pm0.2a$	$0.4 \pm 0.4 a$
:	(6- <i>p</i> -coumaroyl)glucoside											
14	peonidin-3-	1.3±0.9a	2.3±1.7a	$3.0 \pm 1.5 a$	3.7 ± 1.8 a	3.7 ± 0.7 a	4.8 ± 1.6 a	3.5 ± 2.5 a	3.6 ± 1.6 a	$4.2 \pm 4.0 \mathrm{a}$	3.3 ± 0.7 a	2.7±1.9a
!	(6- <i>p</i> -coumaroyl)glucoside			1								Ag
12	malvidin-3-	19.3 ± 8.5 a	27.7 ± 12.6 a	$22.7 \pm 7.7 a$	23.4 ± 7.9 a	$28.4 \pm 8.4 a$	31.8±14.6a	23.9 ± 12.5 a	$20.8 \pm 10.9 \mathrm{a}$	23.8 ± 14.1 a	31.0±2.3a	24.5 ± 13.6 a
	(6-p-coumaroyl)glucoside	;	:	;	į	;	í !		í :	;		
	total coumaroylated	25.5 (8.0)	37.4 (8.1)	30.4 (5.6)	38.1 (5.7)	39.9 (6.2)	43.6 (5.7)	31.9 (5.8)	30.1 (6.5)	34.0 (4.9)	(2.6)	
	total anthocyanins	319.9	462.0	545.7	671.2	640.7	763.2		466.2	689.4		
	∑ glucosylated/∑ acetylated	4.4	4.3	5.4	0.9	2.0	6.2		5.5	5.4	5.4	
	∑ glucosylated/∑ coumaroylated	9.2	0.6	13.9	13.2	11.8	13.2	13.2	12.0	15.6		
	∑ coumaroylated/∑ acetylated	0.5	0.5	0.4	0.5	0.4	0.5		0.5	0.3		
	∑ acetylated/∑ coumaroylated	2,1	2,1	2,6	2,2	2,4	2,1		2,2	2,9		2,2
												I

^a Different letters within the same row indicate significant differences (p < 0.05) according to a Tukey HSD test. nd, not detected. ^b Relationship (%) between anthocyanin derivatives by acylation and total anthocyanins.

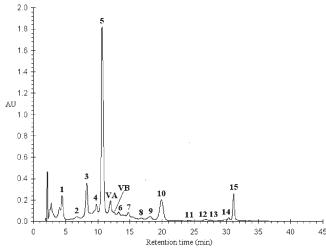


Figure 1. Chromatographic profile of anthocyanins in Malbec wine. For peak identification, see **Table 3**.

glucoside, and tyrosol) and flavonoids (flavanols, flavanonols, and flavonols). **Figure 2** shows a chromatographic profile of low molecular weight phenolic compounds in Malbec wine samples.

An unknown compound (peak 23) was found in all of the wines studied. The peak eluted at 46 min and has a UV spectrum with an absorption maximum at 279 nm, shown in **Figure 3**.

The phenolic acids (gallic, protocatechuic, syringic, *cis*-caftaric, *trans*-caftaric, caffeic, *cis*-coutaric, *trans*-coutaric, *cis*-p-coumaric, and *trans*-p-coumaric) and tyrosol were identified and quantified in all of the wines analyzed. By comparison of the average concentrations for the hydroxybenzoic acids, it was observed that gallic acid was the most abundant, representing 72–77% of all benzoic acids in the wines studied. These values are in accordance with some young Spanish red wines (30); however, the values are higher than those found by Peña-Neira et al. (15) in Spanish red wines.

For the different hydroxycinnamic acids identified in the Malbec wines, their total contents were lower than those found by other authors in Spanish wines (31). Therein, different relationships were observed between the trans and cis isomers of caftaric, coutaric, and coumaric acids; on average, for all wines, the trans/cis ratios were 4.8, 2.2, and 0.2 for coumaric, coutaric, and caftaric acid, respectively.

Among non-flavonoids, stilbenes are the important compounds due to their putative protective effects against cardiovascular diseases (32). Some authors (33) have suggested that the concentrations of these compounds in wines vary from values of < 1 to 30.0 mg/L, depending on multiple factors such as grape variety, fungal infections, winemaking procedures, and weather conditions. In this study, *trans*-resveratrol glucoside was the only stilbene identified, with concentrations ranging from 0.6 to 1.3 mg/L. These values are in agreement with those previously reported by other authors in Tempranillo, Cabernet Sauvignon, and Merlot wines (12). Finally, the levels of tyrosol, formed during yeast fermentation from tyrosine (15), were lower in the Malbec wines than those found in Tempranillo and Cabernet Sauvignon (34).

Flavonoids have been shown to inhibit low-density lipoprotein oxidation, both in vitro and in vivo, and reduce platelet aggregation (35). Flavan-3-ols (catechins) are some of the most widely occurring flavonoids, and the most important sources of these compounds in the diet are grapes and wines, at least in the Mediterranean region (36). Flavan-3-ols were the major class of phenolic compounds present in the samples studied. In all of the

Malbec wines, the (+)-catechin contents were higher than those of (-)-epicatechin, with concentrations ranging from 24.4 to 47.0 mg/L and from 14.5 to 23.6 mg/L, respectively.

Flavonols accumulate in the skins of red grapes during ripening (37). The time of harvest and the vinification conditions have noticeable influences on flavonol content. The wines obtained from very ripe grapes with longer sun exposure contain higher concentrations of flavonols. In the Mendoza region, with a dry period during the harvest time and especially with high sunlight intensity, the grapes are allowed to ripen to a much greater extent than elsewhere, and this appears to be associated with an increased accumulation of flavonols (38,39). In the Malbec wines studied, the content of total flavonols was between 11.2 and 16.7 mg/L. These results are in agreement with those obtained by other authors in red wines of different geographical origins (30,39).

Another important 2-phenylbenzopyran subclass found commonly in fruit-based beverages is the dihydroflavonols (flavanonols). These compounds contribute to a smaller fraction of total wine flavonoids, and they play functional roles in grape berries. Flavanonols such as astilbin most likely function in plants to fight botrytis infection. Astilbin (dihydroquercetin-3-Orhamnoside) is a bioactive flavanonol thought to provide antimicrobial, antibacterial, cardiopreventive, and possibly chemopreventive effects in humans (40). From the UV characteristics $(\lambda_{max}$ 290 nm; $\lambda_{shoulder}$ 327 nm) (40), astilbin was tentatively identified in all of the Malbec wines, with concentrations ranging from 9.1 to 16.3 mg/L. These values are in agreement with those found by Vitrac et al. (33) in commercial red wines from southwestern France. Using the UV spectral information, it was possible to detect three astilbin derivatives (1, 2, and 3, **Table 4**) by comparison with the astilbin spectrum. The retention times of these compounds were 19, 31, and 33 min, respectively, and they presented a UV spectrum with an absorption maximum at 290 nm (Figure 4).

Considering that to our knowledge there is not any information in the literature about the chemical composition of Malbec wines, our discussion will consider a comparison of Malbec wines with those of other international red varieties.

It is irrefutable that the amounts as well as the several types of phenolic compounds that occur in wines depend on a wide range of factors, including cultural practices, local climate conditions, vinification techniques, storage, and aging (10-12, 14). These factors make it difficult to compare different wines. The examination of the polyphenolic composition has in some instances provided evidence of the potential of certain cultivars for polyphenol biosynthesis (41). The phenolic profile and the range of the data obtained in the Malbec samples analyzed in this work are in agreement with the available international literature for other red varieties. Their phenolic content was comparable to, and in some cases richer than, the content of the most well-known varieties used for producing quality wines (12, 15, 16, 25, 30, 31, 33, 36, 39, 41). The results obtained confirm a variation in phenolic content among wine samples tested and are indicative of the polyphenolic richness of the Malbec samples analyzed.

The critical assessment of the data from the wine samples analyzed clearly indicates some areas from Mendoza province to be distinctive for their exceptional polyphenolic potential. Considering total phenols, tannins, and anthocyanins, as well as the total anthocyanins determined by HPLC-DAD, zones 9 and 6 were particularly rich in these phenolic groups. In addition, all Malbec wine samples were exceptionally high in total tannin content, which could be possibly used in mixtures with other varieties poor in tannins to produce balanced, in both mouth structure and body, wines.

 Table 4. Phenolic Compounds Quantified [Mean (mg/L) ± SD] in Commercial Malbec Wines from Different Geographical Origins of Mendoza^a

(n=5) 2 (n=5) 3 (n=7) 4 (n=5) 5 (n=6) 6 (n=4) 7 (n=5) 177±66a 138±31a 201±51a 185±47a 151±38a 217±60a 188±52a 27±60a 23±07a 36±07a 26±05a 42±11a 35±11a 27±07a 233 23±07a 44±17a 44±24a 30±08a 42±11a 35±11a 237 23±07a 207 300 250 35±11a 25±11a 237 22±10a 12±11a 31±16a 42±11a 35±11a 25±10a 24±14a 18±20a 20±11a 21±11a 17±03a 34±29a 19±11a 200 25±17a 12±11a 21±11a 41±10a 24±2a 25±10a 20±00 25±17a 12±11a 41±10a 24±2a 25±10a 19±0a 30±0a 20±00 44±1a 25±10a 19±0a 10±0a 11±10a 11±10a 11±10a 11±10a 11±10a 11±10a 11±10a 11±10a 11±10a <t< th=""><th></th><th></th><th></th><th></th><th></th><th>></th><th>-</th><th></th><th></th><th></th><th></th><th></th></t<>						>	-					
yadroxyberzoic acids pydicostacturic cocide yadroxyberzoic acids yadroxycherzoic acids yadroxycherzoic acids yadroxycherzoic acids yadroxycherzoic acids yadroxycherzoic acids yadroxycherzoic acids yadroxychramic acids yadroxychrami	punodwoo	1 (n = 5)	= <i>u</i>)	3 (n = 7)	= <i>u</i>)	= <i>u</i>)	= <i>u</i>)	Ш	Ш	9 (n = 8)	10 (n = 5)	11 (n = 5)
gailing 177±66a 138±31a 201±51a 155±47a 151±38a 177±66a 177±66a 138±31a 201±57a 151±38a 177±66a 177±66a 137±07a 35±07a 35±07a 35±07a 35±17a	ybenzoic acids											
primopic 27+08a 23±0.7a 36±0.7a 35±1.1a 30±0.8a 41±1.9a 21±0.7a 10±0.8a 41±1.9a 23±1.1a 10±0.8a 10±0.8		$17.7 \pm 6.6 a$	13.8 ± 3.1 a	20.1 ± 5.1 a		3.8	$21.7 \pm 6.0 \mathrm{a}$	± 5.2	+	18.2 ± 4.2 a	18.6 ± 7.0 a	$18.6 \pm 6.7 a$
hydroxycinnemic acids 23±0.4a 22±1.0a 41±15a 23±11a 30±0.8a 40±11a 35±11a 30±0.8a 30±0	techuic	$2.7 \pm 0.8 a$	2.3±0.7a	$3.6 \pm 0.7 a$	$2.3 \pm 0.5 a$	$2.6 \pm 0.8 a$	4.1 ± 1.9 a	± 0.7	± 0.6	+	$2.5 \pm 1.3 a$	$2.6 \pm 0.9 a$
hydroxycintamic acids 23.7 18.4 27.8 24.1 20.7 30.0 25.0 hydroxycintamic acids 28.2.2.1 26.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	0	$3.3 \pm 0.4 a$	$2.3 \pm 1.0 a$	4.1 ± 1.5 a	3.3 ± 1.1 a	± 0.8	4.2 ± 1.1 a	1:1	± 0.6	$2.9 \pm 0.7 a$	3.8 ±2.2 a	$2.9 \pm 1.8 a$
Operation		23.7	18.4	27.8	24.1	20.7	30.0	25.0	23.0	24.3	24.9	24.1
Continue	cycinnamic acids											
transcentaric 09+044b 06+102ab 04+101ab 07+102ab 06+103ab 07+102ab 06+103ab 07+102ab 07+102ab 06+103ab 07+102ab 07+104ab	aric	2.8 ± 2.1 a	$4.5 \pm 2.3 \mathrm{a}$	2.4 ± 1.7 a	4.4 ± 2.4 a	± 2.2	$5.6 \pm 6.5 a$	$5.0 \pm 3.0 a$	3.1 ± 1.3 a	$3.0 \pm 0.8 \mathrm{a}$	$3.4 \pm 1.4 a$	$5.1 \pm 3.1 a$
coloratic 24+14a 18+20a 20+11a 21+11a 21+12a 22+13a 22+11a 31+1a 47+11a 60+12a 05+02a 23+13a 14-02a 05+02a 14+12a 05+02a 14+14a 05+02a 14+14a 05+02a 14+12a 05+02a 14+14a 05+02a 14+14a 05+02a 14+14a 05+02a 05+03a 05+03	aftaric	$0.9 \pm 0.4 \mathrm{b}$	0.6 ± 0.2 ab	0.4 ± 0.1 ab	$0.7 \pm 0.2 \text{ ab}$	$0.6\pm0.3\mathrm{ab}$	$0.6\pm0.3\mathrm{ab}$	$0.7 \pm 0.2 \mathrm{ab}$	$0.4 \pm 0.1 a$	$0.4 \pm 0.1 a$	± 0.1	$0.8 \pm 0.4 { m ab}$
12		2.4 ± 1.4 a	$1.8 \pm 2.0 a$	$2.0 \pm 1.1 a$	2.1 ± 1.1 a	± 0.5	3.4 ± 2.9 a	1.9±1.1a	$1.5 \pm 0.7 a$	1.8 ± 1.1 a	$2.1 \pm 2.5 a$	$1.3 \pm 0.5 \mathrm{a}$
Interportation Substitute	taric	$2.0 \pm 1.5 a$	$2.2 \pm 1.7 a$	1.2±1.1a	$3.1 \pm 1.6 a$	± 1.0	2.4 ± 2.7 a	± 1.9	$2.1 \pm 1.0 a$	± 0.7	+	3.2 ± 1.7 a
risp countaric 03±01a 04±01a 03±02a 04±01a 03±02a 04±01a 05±02a 05±02a 05±02a 05±02a stilbene 171 166 136 178 178 178 stilbene 141 166 136 178 178 178 stilbene 1.1±08a 09±05a 08±04a 12±07a 07±04a 13±11a 1.1±05a procyandin B3 3.6±13a nd 2.1 3.4±14a 2.3±04a 2.6±0.6a nd procyandin Gimer 5.4±13a nd 2.1 3.4±14a 2.3±0.4a 2.6±0.6a nd (-)-spicalechin 2.0±1±6ba 145±21a 179±5ba 174±85a 2.6±4.8a 3.9±1.0a 2.5±0.4a (-)-spicalechin 2.0±1±6ba 145±21a 179±5ba 146±4.7a 172±5.3a 2.3±0.7a 2.0 2.1 (-)-spicalechin 2.0±1±0a 3.1±15a 3.7±15a 3.4±15a 3.8±15a 3.8±15a 3.8±15a 3.8±15a 3.8±15a 3.8±15a	outaric	$3.0 \pm 0.9 a$	4.1 ± 1.9 a	$5.1 \pm 0.9 a$	4.7 ± 1.7 a	4.1 ± 1.1 a	$4.7 \pm 1.2 a$	± 3.4	+	± 1.2	+	3.6 ± 0.7 a
trainsp-boundaric 27±17a 30±21a 22±10a 19±08a 19±08a 30±20a 14±02a ordari total 141 166 136 173 140 20.3 178 stitlbene trans-reserentrol glucoside 11±0.6a 09±0.5a 08±0.4a 12±0.7a 0.7±0.4a 13±11a 1.1±0.5a 178 procyandini BS 36±1.3a nd 2.1 2.1 34±1.4a 2.3±0.4a 1.1±0.5a 1.1±0.5a 1.1±0.5a procyandini mer 2.0±0.2a 4.1±3.8a 7.5±5.4a 1.1±5.5a 5.5±0.7a 9.9±7.0a 2.5±0.7a procyandini mer 2.0±0.2a 4.1±3.8a 7.5±5.4a 1.1±5.5a 3.4±1.4a 2.3±0.6a 2.5±0.7a procyandini mer 2.0±0.2a 4.1±3.8a 7.5±5.4a 1.7±2.ac 4.1±0.5a 3.5±0.7a 3.5±0.7a procyandini mer 2.0±0.2a 4.15±2.1a 1.7±5.5a 3.4±1.6a 3.2±1.6a 3.2±1.6a 3.2±0.7a 3.2±0.7a procyandin mer 2.0±0.2a 2.0±0.2a <th>oumaric</th> <th>$0.3 \pm 0.1 a$</th> <th>$0.4 \pm 0.1a$</th> <th>$0.3 \pm 0.2 a$</th> <th>$0.4 \pm 0.2 a$</th> <th>$0.4 \pm 0.1a$</th> <th>7.0</th> <th>± 0.2</th> <th>+H</th> <th>± 0.2</th> <th>-#1</th> <th>± 0.2</th>	oumaric	$0.3 \pm 0.1 a$	$0.4 \pm 0.1a$	$0.3 \pm 0.2 a$	$0.4 \pm 0.2 a$	$0.4 \pm 0.1a$	7.0	± 0.2	+H	± 0.2	-#1	± 0.2
total 141 166 136 173 140 203 178 sithener transfersement of setting 11±06a 09±05a 08±04a 12±07a 0.7±04a 1.3±11a 1.1±05a flavanois 11±06a 0.9±05a 0.8±04a 12±07a 0.7±04a 1.3±11a 1.1±05a 1.1±05a procyandin BS 36±13a 225.55a 4.1±38a 7.1±55a 3.7±14a 2.3±04a 2.5±07a 2.5±07a procyandin BS 7.3±57a 4.1±38a 7.2±54a 1.7±35a 2.3±00a 2.5±07a procyandin BS 2.0±16.8a 145±21a 17.2±53a 2.3±07a 2.5±07a procyandin BS 2.0±16.8a 1.5±14a 1.7±4.7a 1.7±4.7a 1.7±4.7a 1.7±4.7a 1.7±55a 2.3±0.7a 2.5±0.7a procyandin General Compounds 4.5±0.4a 1.5±0.4a 1.7±6.4a 1.7±6.5a 2.3±0.7a 2.3±0.7a 2.2±0.7a 2.2±0.7a 2.2±0.7a 2.2±0.7a 2.2±0.7a 2.2±0.7a 2.2±0.7a 2.1±0.7a 2.2±0.7a <th>-coumaric</th> <th>$2.7 \pm 1.7 a$</th> <th>3.0 ± 2.1 a</th> <th>$2.2 \pm 1.0 a$</th> <th>1.9±0.8a</th> <th>± 0.8</th> <th>2.0</th> <th>± 0.2</th> <th>+</th> <th>$1.6 \pm 1.0 a$</th> <th>+</th> <th>+</th>	-coumaric	$2.7 \pm 1.7 a$	3.0 ± 2.1 a	$2.2 \pm 1.0 a$	1.9±0.8a	± 0.8	2.0	± 0.2	+	$1.6 \pm 1.0 a$	+	+
stillbene 11±06a 09±05a 08±04a 12±07a 07±04a 13±11a 11±05a flavanois flavanois 36±13a nd 2.1 34±14a 2.3±04a 2.6±0.6a nd procyanidin B3 36±13a 41±38a 2.1 34±14a 2.3±04a 2.6±0.6a nd procyanidin B1 7.3±57a 2.2 7.1±59a 2.2 7.1±59a 2.5±0.7a 3.7±13a 2.3±0.6a 2.5±0.7a procyanidin B1 7.3±57a 2.2 7.1±59a 2.2±13a 7.1±59a 2.2±0.4a 2.5±0.7a 2.5±0.4a procyanidin Giver 2.0±6a 1.2±0.7a 2.2±15a 2.4±8.9a 3.1±15a 2.5±0.4a 2.5±0.7a 2.5±0.7a 2.5±0.7a 2.5±0.7a 2.5±0.7a 2.5±0.7a 2.5±0.7a 2.5		14.1	16.6	13.6	17.3	14.0	20.3			14.1	16.3	16.4
trans-resverator glucoside 11±0.6a 0.9±0.5a 0.8±0.4a 12±0.7a 0.7±0.4a 1.3±1.1a 1.1±0.5a procyamidin B1 36±1.3a nd 2.1 34±1.4a 2.3±0.4a 2.5±0.7a 0.7±0.4a 2.5±0.7a 0.5±0.7a 0.0±0.7a	ē											
flavanois 36±1.3a nd 2.1 3.4±1.4a 2.3±0.4a 2.6±0.6a nd procyandin B3 3.6±1.3a nd 2.1 3.4±1.4a 2.3±0.4a 2.6±0.6a 2.5±0.7a procyandin B4 7.3±5.7a 4.1±3.8a 7.5±5.4a 1.7±5.3a 5.6±3.6a 3.9±7.0a 2.5±0.7a procyandin dimer 5.4±2.3a 2.2 7.1±5.9a 3.7±2.1a 3.1±1.5a 2.3±0.6a 2.5±0.7a (-)-epicatechin 2.0.1±6.8a 145.2±2.1a 1.7±5.3a 2.8±6.9a 187±5.2a (-)-epicatechin 2.0.1±6.8a 16.5±3.ba 1.5±6.8a 2.8±1.10 2.0±0.7a 2.3±0.6a 2.5±0.7a (-)-picatechin 1.3 1.7 1.9 1.56 3.2 2.0±0.7a <	esveratrol glucoside	$1.1 \pm 0.6 \mathrm{a}$	$0.9 \pm 0.5 \mathrm{a}$	$0.8 \pm 0.4 a$	$1.2 \pm 0.7 a$	\pm 0.4	1.3±1.1a	± 0.5	+	$1.3 \pm 0.5 \mathrm{a}$	$1.0 \pm 0.4 a$	$0.7\pm0.4\mathrm{a}$
procyanidin B3 35±13a nd 21 34±14a 23±04a 26±06a nd procyanidin B1 73±57a 41±38a 75±54a 11.7±35a 56±38a 99±70a 25±07a procyanidin B1 73±57a 21±55a 23±06a 25±07a 25±07a procyanidin B1 73±57a 22±59a 37±21a 31±15a 23±06a 25±07a (+)-catechin 201±68a 145±21a 179±56a 146±47a 172±53a 236±99a 187±52a (-)-epicatechin 201±68a 145±21a 179±56a 146±47a 172±53a 236±99a 187±52a flavarionsis 31±38a 160±3.5ab 150±3.4ab 163±1.7b 122±21ab 148±55ab 147±5.1ab astilibin derivative 3 20±1.1a 20±0.6a 29±14a 28±0.6a 20±0.7a 27±0.5a 21 astilibin derivative 3 20±1.1a 20±0.6a 29±14a 28±0.6a 20±0.7a 27±0.5a 21±0.5a astilibin derivative 3 20±1.1a 20±0.5a	slc											
procyanidin B1 73 ±57a 91 ±38a 73 ±57a 71 ±58a 71 ±68a 71 ±69a 71 ±69a 71 ±68a 71 ±68a 71 ±69a 71 ±69a 71 ±68a 71 ±69a 71 ±60a 71 ±6	nidin B3	$3.6 \pm 1.3 a$	pu	2.1	$3.4 \pm 1.4 a$	$2.3 \pm 0.4 \mathrm{a}$	$2.6 \pm 0.6 a$	pu	5.9	3.1 ± 1.1 a	$3.0 \pm 1.8 \mathrm{a}$	2.7
procyandin dimer 5.4 ± 2.3 a 2.2 7.1 ± 5.9 a 3.7 ± 2.1 a 3.1 ± 1.5 a 2.3 ± 0.6 a 2.5 ± 0.4 a 1.9 electrin 20.1 ± 6.8 a 14.5 ± 2.1 a 17.2 ± 5.6 a 14.4 ± 8.9 a 28.1 ± 10.7 a 4.0 ± 9.9 a 38.3 ± 12.1 a 1.2 ± 2.1 a 1.2 ± 2.2 a	nidin B1	7.3 ± 5.7 a	$4.1 \pm 3.8 \mathrm{a}$	$7.5 \pm 5.4 \mathrm{a}$	$11.7 \pm 3.5 a$	5.6 ± 3.8 a	$9.9 \pm 7.0 a$	0.7	$7.4 \pm 6.8 \mathrm{a}$	$10.0 \pm 5.3 \mathrm{a}$	$6.0 \pm 4.2 \mathrm{a}$	$5.2 \pm 4.3 \mathrm{a}$
(+)-catechin 26.0 ± 7.9 a 25.2 ± 5.9 a 33.6 ± 13.5 a 24.4 ± 8.9 a 28.1 ± 10.7 a 47.0 ± 9.9 a 39.3 ± 12.1 a (-)-epicatechin 20.1 ± 6.8 a 14.5 ± 2.1 a 17.9 ± 5.6 a 17.2 ± 5.3 a 28.1 ± 10.7 a 47.0 ± 9.9 a 18.7 ± 5.2 a (-)-epicatechin 62.4 a 46.0 b 68.2 b 57.8 b 56.3 b 85.4 b 63.0 c (+)-catechin/(-)-epicatechin 1.3 b 1.7 b 1.9 b 1.7 b 1.0 b 2.1 b 2.1 c 2.1 c 2.2 c 2.2 c 2.1 c 2.2 c	nidin dimer	$5.4 \pm 2.3 a$	2.2	$7.1 \pm 5.9 \mathrm{a}$	$3.7 \pm 2.1 a$	$3.1 \pm 1.5 a$	$2.3 \pm 0.6 a$	$2.5 \pm 0.4 a$	$3.1 \pm 2.5 a$	2.9 ± 1.4 a	$3.5 \pm 2.3 a$	$3.0 \pm 0.5 \mathrm{a}$
() - epicatechin () - epicat	techin	$26.0 \pm 7.9 \mathrm{a}$	$25.2 \pm 5.9 \mathrm{a}$	$33.6 \pm 13.5 \mathrm{a}$	24.4 ± 8.9 a	$28.1 \pm 10.7 a$	$47.0 \pm 9.9 a$	$39.3 \pm 12.1 \mathrm{a}$	$42.1 \pm 25.1 a$	$33.6 \pm 15.0 \mathrm{a}$	$33.4 \pm 22.2 \mathrm{a}$	$29.3 \pm 16.3 \mathrm{a}$
total 624 46.0 68.2 57.8 56.3 85.4 63.0 tavanonois tavanonois 1.7 1.9 1.7 1.6 2.0 2.1 tavanonois astilibin derivative 1 1.3 1.7 1.9 1.7 1.6 2.0 2.1 astilibin derivative 2 2.1 ± 3.8 a 16.0 ± 3.5 ab 15.0 ± 3.4 ab 16.3 ± 1.7 b 12.2 ± 2.1 ab 14.7 ± 5.1 ab 2.1 astilibin derivative 2 2.83 ± 1.4 a 2.0 ± 0.7 a 1.7 ± 0.5 a 2.0 ± 0.7 a 2.2 ± 0.0 a 2.2 ± 0.0 a 2.3 ± 0.7 a 2.3 ± 0.2 a	icatechin	$20.1 \pm 6.8 a$	14.5 ± 2.1 a	17.9 ± 5.6 a	14.6 ± 4.7 a	$17.2 \pm 5.3 a$	$23.6 \pm 9.9 \mathrm{a}$	± 5.2	$20.2 \pm 7.1 a$	$17.4 \pm 5.5 a$	$18.4 \pm 6.9 \mathrm{a}$	$17.6 \pm 9.3 \mathrm{a}$
(+)-catechin/(-)-epicatechin 1.3 1.7 1.9 1.7 1.6 2.0 2.1 flavanonis astitibin derivative 1 1.5 ± 0.4a 1.9 ± 0.6a 2.9 ± 1.4a 2.8 ± 0.6a 2.0 ± 0.7a 2.1 ± 5.1ab 1.7 ± 5.1ab 2.2 ± 2.1ab 1.48 ± 5.5ab 1.47 ± 5.1ab 2.3 ± 0.7a		62.4	46.0	68.2	57.8	56.3	85.4	63.0	78.7	67.0	64.3	57.8
flavanools 91±38a 160±35ab 150±34ab 163±1.7b 122±2.1ab 148±55ab 147±5.1ab astilbin 15±0.4a 19±0.6a 29±1.4a 28±0.6a 20±0.7a 27±0.5a 23±0.7a astilbin derivative 2 28:3±14.1a 426±2.5ab 378±5.4a 418±5.9ab 348±3.6ab 40.9±12.6ab 37.9±7.9ab astilbin derivative 3 2.0±1.1a 2.0±0.7a 1.7±0.5a 1.6±0.6a 19±0.9a 1.6±0.4a 1.5±0.2a astilbin derivative 3 2.0±1.1a 2.0±0.7a 2.0±0.7a 1.7±0.5a 1.6±0.6a 1.9±0.9a 1.6±0.4a 1.5±0.2a astilbin derivative 3 2.0±1.7a 2.0±1.7a 6.2.5 57,4 62.5 50.9 60.0 56.4 66.0 flavonoleglycoside 1 2.1 2.6±1.7a 38±2.1a 3.1±2.2a 3.1±1.4a 3.3±1.9a 3.3±2.0a 1.9±0.4a flavonoleglycoside 2 4.1±1.3a 2.7±1.5a 3.7±1.0a 4.3±1.5a 3.8±2.0a 3.0±2.0a 1.9±0.4a myricetin-3-Oglacoside 2 1.6±0.9a	techin/(-)-epicatechin	1.3	1.7	1.9	1.7	1.6	2.0	2.1	2.1	1.9	1.8	1.7
astilbin derivative 1 1.5 ± 0.4 a 1.9 ± 0.6 a 2.9 ± 1.4 a 2.8 ± 0.6 a 2.0 ± 0.7 a 2.3 ± 0.7 a astilbin derivative 1 1.5 ± 0.4 a 1.9 ± 0.6 a 2.9 ± 1.4 a 2.8 ± 0.6 a 2.0 ± 0.7 a 2.7 ± 0.5 a 2.3 ± 0.7 a astilbin derivative 2 28.3 ± 14.1 a 42.6 ± 2.5 ab 37.8 ± 5.4 ab 41.8 ± 5.9 ab 34.8 ± 3.6 ab 40.9 ± 12.6 ab 37.9 ± 7.9 ab astilbin derivative 3 2.0 ± 1.1 a 2.0 ± 0.7 a 1.7 ± 0.5 a 1.6 ± 0.6 a 1.9 ± 0.9 a 1.6 ± 0.4 a 1.5 ± 0.2 a 1.6 ± 0.0 a 1.7 ± 0.5 a 1.6 ± 0.6 a 1.9 ± 0.9 a 1.6 ± 0.4 a 1.5 ± 0.2 a 1.6 ± 0.9 a 1.3 ± 0.7 a 1.3 ± 0.5 a 1.0 ± 0.1 a 1.3 ± 0.5 a 1.0 ± 0.1 a 1.3 ± 0.5 a 1.0 ± 0.1 a 1.3 ± 0.5 a 1.4 ± 1.0 a 1.2 ± 0.1 a 1.0 ± 0.1 a 1.3 ± 0.1 a 1.4 ± 1.0 a 1.0 ± 0.1 a 1.3 ± 0.1 a 1.4 ± 1.0 a 1.4 ± 0.1 a 1.4 ± 0.4 a	slouc											
astibin derivative 1 1.5 ± 0.4a 1.9 ± 0.6a 2.9 ± 1.4a 28 ± 0.6a 2.0 ± 0.7a 2.7 ± 0.5a 2.3 ± 0.7a astibin derivative 2 28.3 ± 14.1a 42.6 ± 2.5a 37.8 ± 5.4a 41.8 ± 5.9a 40.9 ± 12.6a 37.9 ± 7.9a 2.0 ± 1.1a 2.0 ± 0.7a 1.7 ± 0.5a 1.6 ± 0.6a 1.9 ± 0.9a 1.6 ± 0.4a 1.5 ± 0.2a 1.7 ± 0.5a 1.7 ± 0.5a 1.6 ± 0.6a 1.9 ± 0.9a 1.6 ± 0.4a 1.5 ± 0.2a 1.7 ± 0.5a 1.7 ± 0.5a 1.7 ± 0.5a 1.9 ± 0.9a 1.6 ± 0.4a 1.5 ± 0.2a 1.7 ± 0.5a 1.7 ± 0.5a 1.3 ± 2.7a 1.5a 1.3 ± 2.7a 1.5a 1.3 ± 2.7a 1.5a 1.3 ± 2.5a 1.7a 1.3a 1.3 ± 0.5a 1.3 ± 0.7a 1.3 ± 0.5a 1.3 ± 0.7a 1.3a 1.3 ± 0.5a 1.3 ± 0.7a 1.3a 1.3a 0.3a 1.3a 1.3a 1.3a 1.3a 1.3a 1.3a 1.3a 1		9.1 ± 3.8 a	$16.0 \pm 3.5 \mathrm{ab}$	$15.0 \pm 3.4 ab$	$16.3 \pm 1.7 \mathrm{b}$	$12.2 \pm 2.1 ab$	14.8 \pm 5.5 ab	$14.7 \pm 5.1 ab$	$16.0 \pm 3.9 \mathrm{b}$	$13.8 \pm 2.3 ab$	$13.6 \pm 1.8 ab$	$12.9 \pm 2.9 ab$
astilbin derivative 2 28.3 ± 14.1a	derivative 1	$1.5 \pm 0.4 a$	$1.9 \pm 0.6 a$	2.9 ± 1.4 a	2.8 ± 0.6 a	$2.0 \pm 0.7 a$	$2.7 \pm 0.5 a$	2.3±0.7a	2.2 ±0.4 a	$2.1 \pm 0.5 a$	2.6 ±2.1a	$3.6 \pm 1.2 a$
astilbin derivative 3 2.0±1.1a 2.0±0.7a 1.7±0.5a 1.6±0.6a 1.9±0.9a 1.6±0.4a 1.5±0.2a total flavonols total 40.9 62.5 57,4 62.5 50.9 60.0 56.4 62.5 flavonol-glycoside 1 2.1 2.6±1.7a 3.8±2.1a 3.1±2.2a 3.1±1.4a 3.3±4.2a 3.3±1.9a 1.9±0.4a myricetin-3-O-glucoside 2 4.1±1.3a 2.7±1.5a 3.7±1.0a 4.3±1.5a 3.8±2.0a 3.0±2.0a 3.3±2.3a myricetin-3-O-glactoside 0.8±0.3a 1.0±0.3a 1.4±1.0a 0.9±0.1a 1.0±0.1a 0.9 0.9±0.1a 1.0±0.3a quercetin total 12.9 11.7 13.4 15.8 14.0 15.1 15.1 15.1 15.1 15.1 15.1 15.1 15	derivative 2	28.3± 14.1 a	$42.6 \pm 2.5 ab$	$37.8 \pm 5.4 ab$	41.8 \pm 5.9 ab	34.8 ± 3.6 ab	$40.9 \pm 12.6 ab$	$37.9 \pm 7.9 ab$	$47.4 \pm 14.2 \mathrm{b}$	+	$47.9 \pm 7.6 \mathrm{b}$	+
total 40.9 62.5 57,4 62.5 50.9 60.0 56.4 40.9 flavonols flavonols flavonols 40.9 62.5 57,4 62.5 50.9 60.0 56.4 60.0 56.4 40.0 <th>derivative 3</th> <th>$2.0 \pm 1.1 a$</th> <th>$2.0 \pm 0.7 a$</th> <th>$1.7 \pm 0.5 a$</th> <th>± 0.6</th> <th>+</th> <th>+</th> <th>± 0.2</th> <th>2.4±1.2a</th> <th>+</th> <th>± 1.0</th> <th>$2.0 \pm 1.5 a$</th>	derivative 3	$2.0 \pm 1.1 a$	$2.0 \pm 0.7 a$	$1.7 \pm 0.5 a$	± 0.6	+	+	± 0.2	2.4±1.2a	+	± 1.0	$2.0 \pm 1.5 a$
flavonols flavonols flavonols disconnol-glycoside 1 2.1 2.6±1.7a 3.8±2.1a 3.1±2.2a 3.1±1.4a 3.3±4.2a 3.3±1.9a flavonol-glycoside 2 4.1±1.3a 2.7±1.5a 3.7±1.0a 4.3±1.5a 3.8±2.0a 3.0±2.0a 3.3±2.3a myricetin-3-O-glucoside 1.6±0.9a 1.3±0.1a 1.3±0.5a 2.5±0.6a 1.7±0.8a 2.9±1.7a 1.9±0.4a myricetin-3-O-glactoside 0.8±0.3a 1.0±0.3a 1.4±1.0a 0.9±0.1a 1.0±0.1a 0.9 quercetin 4.3±2.4a 4.1±1.9a 3.2±2.1a 5.0±1.5a 4.4±3.1a 5.0±2.0a 4.9±2.7a total 12.9 11.7 13.4 15.8 14.0 15.1 14.3 other compounds 5.0±2.8a 5.0±1.4a 5.8±1.0a 6.2±1.3a 5.7±1.0a 7.5±0.9a 5.7±1.2a total 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4		40.9	62.5	57,4	62.5	50.9	0.09	56.4	0.89	57.5	9.99	9.99
flavonol-glycoside 1 2.1 2.6±1.7a 3.8±2.1a 3.1±2.2a 3.1±1.4a 3.3±4.2a 3.3±1.9a flavonol-glycoside 2 4.1±1.3a 2.7±1.5a 3.7±1.0a 4.3±1.5a 38±2.0a 3.0±2.0a 3.3±2.3a myricetin-3-0-glucoside 1.6±0.9a 1.3±0.1a 1.3±0.5a 2.5±0.6a 1.7±0.8a 2.9±1.7a 1.9±0.4a myricetin-3-0-galactoside 0.8±0.3a 1.0±0.3a 1.4±1.0a 0.9±0.1a 1.0±0.1a 0.9 0.9±0.3a quercetin diverse 1.2.9 1.1.7 1.34 15.8 14.0 15.1 14.0 15.1 14.3 14.0 15.1 14.0 15.1 14.3 14.0 15.1 14.0 15.1 14.0 15.1 14.0 15.1 14.0 15.1 14.0 15.1 14.0 15.1 14.0 15.1 14.0 15.1 14.0 15.1 14.0 15.1 14.0 15.1 14.0 15.1 14.0 15.1 14.0 15.1 14.0 15.1 14.0 15.1 14.0 15.1 15.1 15.1 15.1 15.1 15.1 15.1 15	slo											
flavonol-glycoside 2 4.1±1.3a 2.7±1.5a 3.7±1.0a 4.3±1.5a 3.8±2.0a 3.0±2.0a 3.3±2.3a myricetin-3-O-glucoside 0.8±0.3a 1.3±0.1a 1.3±0.5a 2.5±0.6a 1.7±0.8a 2.9±1.7a 1.9±0.4a myricetin-3-O-galactoside 0.8±0.3a 1.0±0.3a 1.4±1.0a 0.9±0.1a 1.0±0.1a 0.9 0.9±0.3a quercetin 4.3±2.4a 4.1±1.9a 3.2±2.1a 5.0±1.5a 4.4±3.1a 5.0±2.0a 4.9±2.7a 1.0al 1.2.9 11.7 13.4 15.8 14.0 15.1 14.0 15.1 14.3 14.0 15.1 14.0 15.1 14.3 14.0 15.1 14.0 15.1 14.0 15.1 14.0 15.1 14.3 15.1 14.0 15.1 14.0 15.1 14.0 15.1 14.0 15.1 14.0 15.1 15.1 14.0 15.1 15.1 15.1 15.1 15.1 15.1 15.1 15	1-glycoside 1	2.1	2.6 ± 1.7 a	$3.8 \pm 2.1 a$	$3.1 \pm 2.2 a$	3.1 ± 1.4 a	$3.3 \pm 4.2 \mathrm{a}$	± 1.9	5.4 ±3.3a	$3.8 \pm 1.4 a$	$1.5 \pm 0.6 \mathrm{a}$	$0.8 \pm 0.3 \mathrm{a}$
myricetin-3-O-glucoside 1.6 ± 0.9a 1.3 ± 0.1a 1.3 ± 0.5a 2.5 ± 0.6a 1.7 ± 0.8a 2.9 ± 1.7a 1.9 ± 0.4a myricetin-3-O-galactoside 0.8 ± 0.3a 1.0 ± 0.3a 1.4 ± 1.0a 0.9 ± 0.1a 1.0 ± 0.1a 0.9 0.9 ± 0.3a quercetin 4.3 ± 2.4a 4.1 ± 1.9a 3.2 ± 2.1a 5.0 ± 1.5a 4.4 ± 3.1a 5.0 ± 2.0a 4.9 ± 2.7a total 12.9 11.7 13.4 15.8 14.0 15.1 14.3 other compounds 5.0 ± 2.8a 5.0 ± 1.4a 5.8 ± 1.0a 6.2 ± 1.3a 5.7 ± 1.0a 7.5 ± 0.9a 5.7 ± 1.2a unknown compound 1.1 ± 0.4a 2.1 ± 1.1a 1.3 ± 0.3a 1.9 ± 0.9a 1.7 ± 0.7a 2.2 ± 1.5a 1.9 ± 1.8a total 6.1 7.1 8.1 7.4 9.7 7.6 total 6.1 7.1 8.1 7.4 9.7 7.6	1-glycoside 2	$4.1 \pm 1.3 a$	$2.7 \pm 1.5 a$	$3.7 \pm 1.0 a$	4.3±1.5a	$3.8 \pm 2.0 \mathrm{a}$	$3.0 \pm 2.0 a$	33	2.8 ±1.7 a	4.2 ± 1.8 a	2.9 ± 0.7 a	$4.3 \pm 1.9 a$
myricetin-3-O-galactoside $0.8 \pm 0.3a$ $1.0 \pm 0.3a$ $1.4 \pm 1.0a$ $0.9 \pm 0.1a$ 0.9 $0.9 \pm 0.3a$ quercetin $4.3 \pm 2.4a$ $4.1 \pm 1.9a$ $3.2 \pm 2.1a$ $5.0 \pm 1.5a$ $4.4 \pm 3.1a$ $5.0 \pm 2.0a$ $4.9 \pm 2.7a$ quercetin 12.9 11.7 13.4 15.8 14.0 15.1 14.3 14.3 other compounds tyrosol $5.0 \pm 2.8a$ $5.0 \pm 1.4a$ $5.8 \pm 1.0a$ $6.2 \pm 1.3a$ $5.7 \pm 1.0a$ $7.7 \pm 0.3a$ $7.9 \pm 0.9a$ $7.7 \pm 0.7a$ $7.1 \pm 0.4a$ 7	in-3-0-glucoside	$1.6 \pm 0.9 \mathrm{a}$	$1.3 \pm 0.1 a$	$1.3 \pm 0.5 a$	$2.5 \pm 0.6 a$	$1.7 \pm 0.8 \mathrm{a}$	$2.9 \pm 1.7 a$	$1.9 \pm 0.4 a$	1.4 ±0.9 a	1.1	$1.8 \pm 0.9 \mathrm{a}$	$1.8 \pm 1.6 a$
quercetin $4.3 \pm 2.4a$ $4.1 \pm 1.9a$ $3.2 \pm 2.1a$ $5.0 \pm 1.5a$ $4.4 \pm 3.1a$ $5.0 \pm 2.0a$ $4.9 \pm 2.7a$ $total$ other compounds 12.9 11.7 13.4 15.8 14.0 15.1 14.3 14.3 other compounds $5.0 \pm 2.8a$ $5.0 \pm 1.4a$ $5.8 \pm 1.0a$ $6.2 \pm 1.3a$ $5.7 \pm 1.0a$ $7.5 \pm 0.9a$ $7.7 \pm 0.7a$ $7.1 \pm 0.4a$ 7	in-3-0-galactoside	$0.8 \pm 0.3 a$	$1.0 \pm 0.3 a$	$1.4 \pm 1.0 a$	$0.9 \pm 0.1 a$	$1.0 \pm 0.1 a$	6.0	$0.9 \pm 0.3 a$	1.7 ± 1.1 a	± 0.2	$0.9 \pm 0.2 \mathrm{a}$	$0.7 \pm 0.1 a$
total 12.9 11.7 13.4 15.8 14.0 15.1 14.3 other compounds 5.0 ± 2.8 a 5.0 ± 1.4 a 5.8 ± 1.0 a 6.2 ± 1.3 a 5.7 ± 1.0 a 7.5 ± 0.9 a 5.7 ± 1.2 a tyrosol unknown compound 1.1 ± 0.4 a 2.1 ± 1.1 a 1.3 ± 0.3 a 1.9 ± 0.9 a 1.7 ± 0.7 a 2.2 ± 1.5 a 1.9 ± 1.8 a total charactic compounds 1.1 a 7.1 8.1 7.4 9.7 7.6 total charactic compounds 1.5 a 1.0 a 1.0 a 1.0 a 1.0 a	ţi	4.3±2.4a	4.1 ± 1.9 a	3.2 ± 2.1 a	$5.0 \pm 1.5 a$	4.4 ± 3.1 a	± 2.0	4.9±2.7a	$5.4 \pm 2.5 a$	± 2.5	4.1 ± 1.7 a	+
other compounds 50±28a 50±1.4a 58±1.0a 62±1.3a 57±1.0a 75±0.9a 57±1.2a 57 unknown compound 1.1±0.4a 2.1±1.1a 1.3±0.3a 1.9±0.9a 1.7±0.7a 2.2±1.5a 1.9±1.8a 2.6 total 6.1 7.1 7.1 8.1 7.4 9.7 7.6 8.0 total 1.50 100.0		12.9	11.7	13.4	15.8	14.0	15.1	14.3	16.7	15.3	11.2	12.1
tyrosol 5.0 ± 2.8 a 5.0 ± 1.4 a 5.8 ± 1.0 a 6.2 ± 1.3 a 5.7 ± 1.0 a 5.7 ± 1.2 a 5.4 total unknown compound 1.1 ± 0.4 a 2.1 ± 1.1 a 1.3 ± 0.3 a 1.9 ± 0.9 a 1.7 ± 0.7 a 22 ± 1.5 a 1.9 ± 1.8 a 2.6 total total 6.1 7.1 7.1 8.1 7.4 9.7 7.6 8.0 total compounds 15.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2	spunodwo											
unknown compound 1.1 ± 0.4 a 2.1 ± 1.1 a 1.3 ± 0.3 a 1.9 ± 0.9 a 1.7 ± 0.7 a 2.2 ± 1.5 a 1.9 ± 1.8 a 2.6 total 6.1 7.1 7.1 8.1 7.4 9.7 7.6 8.0 total formula 19.1 10.5 a 1		$5.0 \pm 2.8 a$	$5.0 \pm 1.4 \mathrm{a}$	$5.8 \pm 1.0 a$	$6.2 \pm 1.3 a$	$5.7 \pm 1.0 a$	$7.5 \pm 0.9 \mathrm{a}$	5.7 ± 1.2 a	5.4 ±1.1a	± 1.1	$6.7 \pm 1.8 a$	$5.5 \pm 1.3a$
6.1 7.1 7.1 8.1 7.4 9.7 7.6	nn compound	$1.1 \pm 0.4 a$	2.1 ± 1.1 a	$1.3 \pm 0.3 a$	0.9	$1.7 \pm 0.7 a$	$2.2 \pm 1.5 a$	± 1.8	2.6±1.1a	2.0 ± 0.5 a	$1.8 \pm 0.5 a$	$1.6\pm0.7\mathrm{a}$
1620 1660 1640 0010 1050		6.1	7.1	7.1	8.1	7.4	9.7	7.6	8.0	8.7	8.5	7.1
101.2 103.2 100.0 100.0 100.2	total phenolic compounds	161.2	163.2	188.3	186.8	164.0	221.8	185.2	210.1	188.2	192.8	174.8
total p		aftaric attaric untaric ountaric cournaric cournaric cournaric cournaric cournaric le e severatrol glucoside ols nidin B3 nidin B1 nidin B1 nidin B1 nidin B3 nidin B3 nidin B3 nidin B1 nidin B1 nidin B2 nidin B3 nidin B3 nidin B3 nidin B1 nidin B1 nidin B1 nidin B3 nidin B3 nidin B1 nidin B1 nidin B1 nidin B2 nidin B3 nidin B1 nidin B	aftaric 0.20 ± 0.4 b aftaric 2.0 ± 1.4 a taric 2.0 ± 1.5 a outraric 2.0 ± 1.5 a outraric 3.0 ± 0.9 a outraric 3.0 ± 0.1 a 1.1 ± 0.6 a ols outraric 2.7 ± 1.7 a 14.1 14.1 e severatrol glucoside 1.1 ± 0.6 a orols orols orols derivative 1 2.0 ± 6.8 a derivative 2 2.0 ± 7.9 a orols orols	aftaric 0.9 ± 0.4 b 0.6 ± 0.2 about a fazic 0.9 ± 0.4 b 0.6 ± 0.2 about a fazic 0.9 ± 0.4 b 0.6 ± 0.2 about a fazic 0.9 ± 0.4 b 0.6 ± 0.2 about a fazic 0.2 ± 1.5 a 0.4 ± 0.1 a 0.4 ± 0.1 a 0.3 ± 0.1 a 0.4 ± 0.1 a 0.3 ± 0.1 a 0.3 ± 0.1 a 0.4 ± 0.1 a 0.3 ± 0.2 a 0.3 ± 0.3 ± 0.3 a 0.3 ± 0.3 ± 0.3	attaric 0.9 ± 0.4 b 0.6 ± 0.2 ab 2.4 ± 1.4 a 1.8 ± 2.0 a 2.4 ± 1.7 a 1.8 ± 2.0 a 2.4 ± 1.7 a 2.2 ± 1.7 a 2.4 ± 1.5 a 2.2 ± 1.7 a 3.0 ± 0.1 a 0.4 ± 0.1 a 0.3 ± 0.1 a 0.4 ± 0.1 a 0.4 ± 0.1 a 0.2 ± 0.1 a 0.3 ± 0.1 a 0.4 ± 0.1 a 0.3 ± 0.1 a 0.4 ± 0.1 a 0.2 ± 0.1 a 0.3 ± 0.1 a 0.4 ± 0.1 a 0.2 ± 0.1 a 0.3 ± 0.1 a 0.9 ± 0.5 a 0.3 ± 0.1 a 0.9 ± 0.5 a 0.3 ± 0.1 a 0.9 ± 0.5 a 0.3 ± 0.1 a 0.0 ± 0.3 ± 0.1 a 0.0 ± 0.2 ± 0.3 a 0.0 ± 0.3 a 0.3	2.1 ± 1.1 a 3.1 ± 1.1 a 3.1 ± 1.1 a 4.7 ± 1.7 a 0.4 ± 0.2 a 1.9 ± 0.8 a 1.9 ± 0.8 a 1.9 ± 0.8 a 1.2 ± 0.7 a 3.4 ± 1.4 a 1.7 ± 3.5 a 3.7 ± 2.1 a 3.7 ± 2.1 a 3.7 ± 2.1 a 3.7 ± 2.1 a 4.8 ± 5.9 ab 1.6 ± 0.6 a 6.2 5 3.1 ± 2.2 a 4.3 ± 1.5 a 2.5 ± 0.6 a 0.9 ± 0.1 a 5.0 ± 1.5 a 1.9 ± 0.9 a 8.1 186.8	2.1±1.1a 1.8±4.7a 0.05±1.1b 1.9±0.8a 1.9±1.7a 0.07±1.7a 0.04±1.7a	2.1±1.1a 1.3±1.0a 4.7±1.7a 1.3±1.0a 4.7±1.7a 4.1±1.1a 0.4±0.8a 1.9±0.8a 1.9±0.8a 1.9±0.8a 1.2±0.7a 0.7±0.2a 0.4±0.1a 1.9±0.8a 1.9±0.8a 1.2±0.7a 0.7±0.4a 1.9±0.8a 1.9±0.8a 1.7±2.7a 0.7±0.4a 3.4±1.4a 2.3±0.4a 1.7±3.5a 2.8±1.5a 3.1±1.5a 3.7±2.1a 3.1±1.5a 3.7±2.1a 2.3±0.4a 1.6±0.6a 1.9±0.9a 62.5 50.9 62.5 50.9 62.5 50.6a 1.0±0.1a 62.5 1.5a 1.7±0.8a 0.9±0.1a 1.0±0.1a 5.0±1.5a 3.8±2.0a 2.5±0.6a 1.0±0.1a 62.5±0.6a 1.0±0.1a 62.5±0.6a 1.0±0.1a 1.0±0.1a 5.0±1.5a 1.7±0.8a 0.9±0.1a 1.0±0.1a 5.0±1.5a 1.7±0.7a 1.8±0.9a 1.7±0.7a 1.8±0.9a 1.7±0.7a 1.8±0.9a 1.7±0.7a	2.4 ± 2.7 a	2.1 ± 1.7 ± 0.5 ±	7.1.1.2.4.0	7.1.2.2.4 0.2.2.4 0.6.1.3.4 0.7.1.2.4 0.4.1.1.4 0.4.1.1.4 0.4.1.1.4 0.4.1.1.4 0.6.1.2.4 0.6.1.2.4 0.7.1.2.4 0.7.1.2.4 0.6.1.2.4 0.7.1.2.4 0.6.1.2.4 0.7.1.2.4 0.6.1.2.4 0.7.1.2.4 0.6.1.3.4 0.4.1.1.4 0.4.1.1.4 0.6.1.2.4 0.7.1.2.4 0.6.1.3.4 0.4.1.1.4 0.4.1.1.4 0.6.1.3.4 0.6.1.3.4 0.4.1.2.4 0.4.1.2.4 0.6.1.3.4 0.6.1.3.4 0.4.1.2.4 0.6.1.3.4 0.6.1.3.4 0.4.1.2.4 0.6.1.3.4 0.6.1.3.4 0.4.1.2.4 0.6.1.3.4 0.6.1.3.4 0.4.1.2.4 0.6.1.3.4 0.6.1.3.4 0.4.1.2.4 0.6.1.3 0.6.1.3 0.

^a Different letters within the same row indicate significant differences (p < 0.05) according to a Tukey HSD test. nd, not detected.

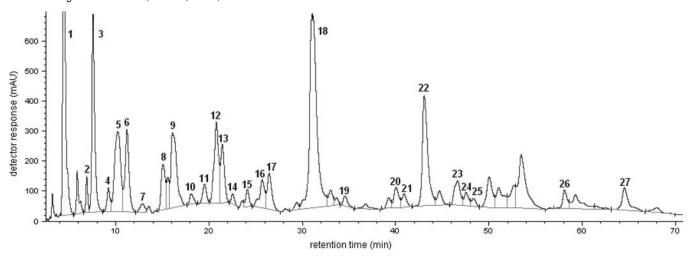


Figure 2. Chromatographic profile of low molecular weight phenolic compounds determined in Malbec wines. For peak identification, see Table 4.

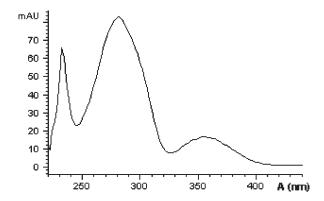


Figure 3. UV spectrum of an unidentified phenolic compound in Malbec wines.

The composition data that have been available to date do not permit the distinction of trends related to specific phenolic metabolites and, therefore, do not allow recognition of varietydependent patterns. With regard to other important international varieties (Syrah, Tempranillo, and Cabernet Sauvignon), a similar but not identical phenolic profile was observed compared with previous works (9, 12, 15, 26, 41). The compound with an UV absorption spectra similar to that of the flavanonol astilbin, showing an absorption maximum at 290 nm but a different retention time, can correspond to an astilbin derivative (Figure 4). It was the major compound found among the low molecular weight phenolic compounds studied in all of the samples (astilbin derivative 2, Table 4). We have observed the same profile behavior in skin samples from Malbec grape berries compared with those from Cabernet Sauvignon, Carménère, and Syrah (data not published). These results and the low amount of flavonols (quercetin, myricetin, and kaempferol) and their glycosylated derivatives, compared with those described for Chilean Cabernet Sauvignon and Merlot wines (mean value of 29 mg/L for both varieties) (39), could be a distinctive phenolic profile of grapes and wines from the Malbec variety. Considering that dihydroflavonols (flavanonols) are precursors of flavonols (42), the high concentration of dihydroflavonols could be related with a lower activity for flavonol synthase (FLS) in Malbec grapes.

Flavan-3-ols were the major class of phenolic compounds present in the samples studied. In all of the Malbec wines, the (+)-catechin contents were higher than those of (-)-epicatechin. These results are in agreement with those presented by other authors for other varieties (16, 25, 36). In grapes, the biosynthesis

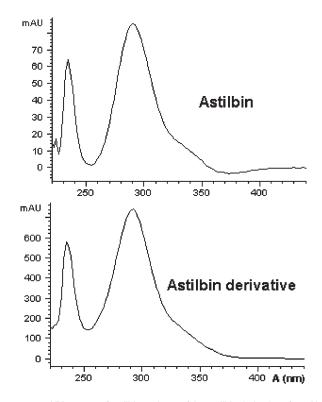


Figure 4. UV spectra of astilbin and one of the astilbin derivatives found in Malbec wines.

of flavanol monomers involves two enzymes: leucoanthocyanidin reductase (LAR) and anthocyanidin reductase (ANR), responsible for the synthesis of (+)-catechin and (-)-epicatechin, respectively. The expression of these enzymes is mainly related to environmental conditions in the vineyard (42). Considering that the ratio (+)-catechin/(-)-epicatechin varies from 1.3 to 2.1 among the samples from the different zones studied, it could be possible to confirm the variation in the LAR and ANR activity due to the effect of environmental conditions. In addition, and independent from the zone, it is possible to suppose that the LAR enzyme is more active than the ANR in the Malbec variety.

Figure 5 shows that the non-acylated glucosides were the most abundant group of pigments in Malbec wines studied (mean value = 75.1%) compared with the acylated forms. These results are in agreement with those described by Núñez et al. (8) for other *Vitis vinifera* L. grape varieties such as Cabernet Sauvignon,

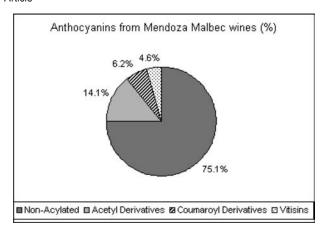


Figure 5. Anthocyanin distribution by acylation in Mendoza Malbec wines.

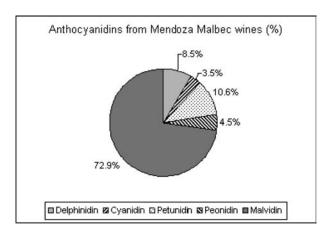


Figure 6. Anthocyanin distribution by anthocyanidin in Mendoza Malbec wines.

Tempranillo, and Graciano. Considering the acylated derivatives, Malbec wines presented a pattern, similar to that of Cabernet Sauvignon, that usually has a higher proportion of acetylglucosides than of coumaroylglucosides (mean values = 14.1 and 6.2%, respectively), whereas other varieties such as Tempranillo are characteristic for presenting the opposite values (9). With regard to the monomeric anthocyanins determined by HPLC-DAD, the total concentration of these compounds was higher than that described by Pérez-Lamela et al. (43) for wines from Sousón, Mencía, and Brancellao, three different *V. vinifera* red grape varieties grown in northwestern Spain.

For the verification of varietal authenticity in red wines, the use of the ratio of acetylated and coumaroylated anthocyanins (Σ acetylated/ Σ coumaroylated) has been proposed (44). The values of this ratio obtained in this study ranged between 2.1 and 2.9 and are in the same range as those described for Carménère and Merlot wines (45). This implies that only with this parameter it is not possible to differentiate between wines of these three varieties. Additionally, the mean values obtained for the ratios Σ glucosylated/ Σ acetylated and Σ glucosylated/ Σ coumaroylated in the different Malbec wines were 4.3–6.2 and 9.0–15.6, respectively (**Table 3**).

As shown in **Figure 6**, the amounts of malvidin-3-glucoside were highest among all of the anthocyanins. This result could indicate that the methyltransferase enzyme involved in the biosynthesis of this anthocyanin is as active as it is in other *V. vinifera* varieties such as Syrah, Cabernet Sauvignon, and Pinot noir (46). The second most abundant anthocyanidin was petunidin, followed by delphinidin. This profile is different from

those of other wine varieties such as Cabernet Sauvignon, Tempranillo, and Graciano (8). The low concentrations found for cyanidin derivatives could be explained by the fact that this anthocyanin is the biosynthetic precursor of all the others (47) and the synthetic pathway could be more active in this variety.

Discriminant Analysis. A canonical discriminant analysis (CDA) was applied to the data of the wines to obtain any differentiation based on their phenolic composition. This analysis was carried out by comparing the wines from the different geographical zones studied. This analysis included only the variables that presented normal distributions with a 90% or higher confidence level (gallic, protocatechuic, syringic, cis-caftaric, and trans-caftaric acids, tyrosol, (+)-catechin, (-)-epicatechin, astilbin derivatives 1 and 2, unknown compound (peak 23), malvidin-3-glucoside, malvidin-3-(6-acetyl)glucoside, peonidin-3-(6-p-coumaroyl)glucoside, malvidin-3-(6-p-coumaroyl)glucoside, total anthocyanins, color intensity, and hue values). Using a stepwise forward selection algorithm, two discriminating functions were determined (p < 0.05, 95%), which allowed the correct prediction of origin for 84% of the 61 wine samples studied. The variables gallic and protocatechuic acids, total anthocyanins, malvidin-3-glucoside, peonidin-3-(6-p-coumaroyl)glucoside, and astilbin derivatives were the most important variables for the classification of the samples analyzed.

Figure 7 depicts the distribution of Malbec samples in the plane defined by the two discriminating functions. A good discrimination was observed between wines from two extremely different zones: 1 (eastern Mendoza) and 9 (West Valle de Uco). They are principally differentiated by their altitudes above sea level (asl); zone 1 varies from 600 to 700 m asl, and zone 9 presented the highest altitudes in the whole region, between 1200 and 1500 m asl. For that reason, zone 9 is colder than zone 1 and the average day/night temperature during the ripening period reaches 20 °C (49). Samples from zone 9 presented a higher concentration of total phenols, tannins, and anthocyanins, which could indicate high tannin reactivity, as well as a greater potential for the formation of polymeric pigments and for color stability. These results are in agreement with those presented by Miguel-Tabares et al. (48), who found that the cultivation altitude had a favorable effect on anthocyanin biosynthesis in red grapes, because higher concentrations of these compounds were reported at higher altitude. Conversely, Mateus et al. (50) demonstrated that low altitude (higher temperature and humidity), especially at the end of maturity, appears to be advantageous for producing higher concentrations of total flavanols and tannins. In the Malbec wines from eastern Mendoza (the low-altitude zone) similar results were not obtained, perhaps explained by the dry climate of the region. In addition, the high temperatures of this zone, above 32-35 °C during the ripening, strongly decrease the anthocyanin accumulation in grapes and are accompanied by poorer wine color, according to other authors (51). On the other hand, the close proximity of the wines from the remaining zones reflects the similar behavior among samples, in relation with the variables used for this discriminat analysis.

The results presented in this paper show variations in some total phenolic variables analyzed and in the individual non-flavonoid and flavonoid contents of the Malbec wines from different geographical zones of Mendoza province. As a conclusion and considering the results presented above, the phenolic composition of Malbec wines from Mendoza is reported for the first time. Considering the individual phenolic composition analyzed by HPLC-DAD, the compound described as an astilbin derivative seems to be characteristic of Malbec wines, which differ from the phenolic profile of other wines from red varieties (e.g., Cabernet Sauvignon, Carménère, and Syrah). With regard to

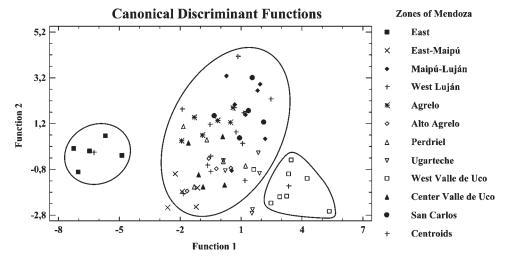


Figure 7. Canonical discriminant analysis of Malbec commercial wines from Mendoza, according to geographical zone (n = 61).

individual anthocyanins, wines of this cultivar are characterized by having a high concentration of simple glucosides, principally the malvidin derivatives, as is observed in other red varieties.

The discriminant analysis applied allowed the differentiation of wines from three origins: eastern Mendoza, West Valle de Uco, and the remaining zones. The wines of West Valle de Uco presented higher concentrations of phenolic compounds that were reputed to possess greater potential to develop polymeric pigments and color stability, suitable for long aging.

The results are indicative of the polyphenolic richness of the Malbec variety from different origins of Mendoza and their potential to produce quality wines. More studies in grapes from specific zones with controlled viticultural conditions and in wines obtained by applying different winemaking practices should be carried out to confirm these observations and to improve the polyphenolic quality of the products.

ACKNOWLEDGMENT

Special thanks are due to all 23 wineries for supplying the samples used in the study and to Héctor Morales of the GIE for his collaboration in the HPLC analysis. David L. and Sharon C. (American Journal Experts) are thanked for correcting the English.

LITERATURE CITED

- Instituto Nacional de Vitivinicultura, Argentina. www.inv.gov.ar/ PDF/Estadisticas/RegistroVinedos/registrovinedossuperficie2007total% 20pais.pdf, 2008.
- (2) Instituto Nacional de Vitivinicultura, Argentina. www.inv.gov.ar/ PDF/Estadisticas/RegistroVinedos/registrovdos2007-mendoza.pdf, 2008.
- (3) J. Rodríguez, J.; Matus, S.; Catania, C.; Avagnina de Del Monte, S. El Malbec, cepaje emblemático de los vinos tintos argentinos. Vinífera Año IV Nº Extraordinario 1999, 61–64.
- (4) Landrault, N.; Poucheret, P.; Ravel, P.; Gasc, F.; Cros, G.; Teissedre, P. Antioxidant capacities and phenolics levels of French wines from different varieties and vintages. *J. Agric. Food Chem.* 2001, 49, 3341–3348.
- (5) Frankel, E. N.; Waterhouse, A. L.; Teissedre, P. L. Principal phenolics phytochemicals in selected California wines and their antioxidant activity in inhibiting oxidation of human low density lipoproteins. J. Agric. Food Chem. 1995, 43, 890–894.
- (6) Renaud, S. C.; De Lorgeril, M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. *Lancet* 1992, 339, 1523– 1526.
- (7) de Villiers, A.; Vanhoenacker, G.; Majek, P.; Sandra, P. Determination of anthocyanins in wine by direct injection liquid chromato-

- graphy—diode array detection—mass spectrometry and classification of wines using discriminant analysis. *J. Chromatogr.*, *A* **2004**, *1054*, 195–204.
- (8) Núñez, V.; Monagas, M.; Gómez-Cordovés, C.; Bartolomé, B. Vitis vinifera L. cv. Graciano grapes characterized by its anthocyanin profile. Postharvest Biol. Technol. 2004, 31, 69–79.
- (9) Monagas, M.; Núñez, V.; Bartolomé, B.; Gómez-Cordovés, C. Anthocyanin-derived pigments in Graciano, Tempranillo, and Cabernet Sauvignon wines produced in Spain. Am. J. Enol. Vitic. 2003, 54, 163–169.
- (10) Canals, R.; Llaudy, M. C.; Valls, J.; Canals, J. M.; Zamora, F. Influence of ethanol concentration on the extraction of color and phenolic compounds from the skin and seeds of Tempranillo grapes at different stages of ripening. J. Agric. Food Chem. 2005, 53, 4019–4025.
- (11) Berli, F.; D'Angelo, J.; Cavagnaro, B.; Bottini, R.; Wuilloud, R.; Silva, M. F. Phenolic composition in grape (Vitis vinifera L. cv. Malbec) ripened with different solar UV-B radiation levels by capillary zone electrophoresis. J. Agric. Food Chem. 2008, 56, 2892–2898.
- (12) Monagas, M.; Suarez, R.; Gómez-Cordovés, C.; Bartolomé, B. Simultaneous determination of nonanthocyanin phenolic compounds in red wines by HPLC-DAD/ESI-MS. Am. J. Enol. Vitic. 2005, 56, 139–147.
- (13) Spayd, S. E.; Tarara, J. M.; Mee, D. L.; Ferguson, J. C. Separation of sunlight and temperature effects on the composition of *Vitis vinifera* cv. Merlot berries. *Am. J. Enol. Vitic.* 2002, *53*, 171–182.
- (14) Cheynier, V.; Moutounet, M.; Sarni-Manchado, P. Los compuestos fenólicos. In *Enología. Fundamentos Científicos y Tecnológicos*, 1st ed.; Flanzy, C., Ed.; AMV Ediciones and Ediciones Mundi-Prensa: Madrid, Spain, 2000; pp 114–136.
- (15) Peña-Neira, A.; Hernández, T.; García-Vallejo, C.; Estrella, I.; Suarez, J. A survey of phenolic compounds in Spanish wines of different geographical origins. *Eur. Food Res. Technol.* 2000, 210, 445–448.
- (16) Goldberg, D.; Karumanchiri, A.; Tsang, E.; Soleas, G. Catechin and epicatechin concentrations of red wine: regional and cultivar-related differences. Am. J. Enol. Vitic. 1998, 49, 23–34.
- (17) Boss, P. K.; Davies, C.; Robinson, S. P. Analysis of the expression of anthocyanin pathway genes in developing *Vitis vinifera* L. cv. Shiraz grape berries and the implications for pathway regulation. *Plant Physiol.* **1996**, *111*, 1059–1066.
- (18) Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Phenolic compounds. In *Handbook of Enology, The Chemistry of Wine Stabilization and Treatments*; Wiley: Chichester, U.K., 2000; Vol. 2, pp 129–186.
- (19) Porter, L. J.; Hritsch, L. N.; Chan, B. G. The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. *Phytochemistry* 1986, 25, 223–230.

- (20) Glories, Y. La couleur des vins rouges. 2ème partie. Mesure, origine et interpretation. Connaiss. Vigne Vin 1984, 18, 253–271.
- (21) Zoecklein, B.; Fugelsang, K.; Gump, B.; Nury, F. In Análisis y Producción de Vino; Acribia: Zaragoza, Spain, 2001; 634 pp.
- (22) Vivas, N.; Glories, Y.; Lagune, L.; Saucier, C.; Augustin, M. Estimation du degré de polymérization des procyanidines du raisin et du vin par la méthode au p-dimethylaminocinnamaldéhyde. J. Int. Sci. Vigne Vin 1994, 28, 319–336.
- (23) Glories, Y. La couleur des vins rouges. Ière partie. Les equilibres des anthocyanes et des tanins. Connaiss. Vigne Vin 1984, 18, 195–217.
- (24) Peña-Neira, A.; Cáceres, A.; Pastenes, C. Low molecular weight phenolic and anthocyanin composition of grape skins from cv. Syrah (Vitis vinifera L.) in the Maipo Valley (Chile): effect of clusters thinning and vineyard yield. Food Sci. Technol. Int. 2007, 13, 153–158
- (25) Minussi, R.; Rossi, M.; Bologna, L.; Cordi, L.; Rotilio, D.; Pastore, G.; Durán, N. Phenolic compounds and total antioxidant potential of commercial wines. *Food Chem.* 2003, 82, 409–416.
- (26) González-Neves, G.; Charamelo, D.; Balado, J.; Barreiro, L.; Bochicchio, R.; Gatto, G.; Gil, G.; Tessore, A.; Carbonneau, A.; Moutounet, M. Phenolic potential of Tannat, Cabernet-Sauvignon and Merlot grapes and their correspondence with wine composition. *Anal. Chim. Acta* 2004, 513, 191–196.
- (27) Llaudy, M. C.; Canals, R.; Canals, J. M.; Rozés, N.; Arola, L.; Zamora, F. New method for evaluating astringency in red wine. J. Agric. Food Chem. 2004, 52, 742–746.
- (28) Ribéreau-Gayon, P. The chemistry of red wine color. In *The Chemistry of Winemaking*; Webb, A. D., Ed.; American Chemical Society: Washington, DC, 1985; Vol. 137, pp 50–87.
- (29) Bakker, J.; Timberlake, C. Isolation, identification and characterization of new color-stable anthocyanins occurring in some red wines. J. Agric. Food Chem. 1997, 45, 35–43.
- (30) García-Falcón, M. S.; Pérez-Lamela, C.; Martínez-Carballo, E.; Simal-Gándara, J. Determination of phenolic compounds in wines: influence of bottle storage of young red wines on their evolution. *Food Chem.* 2007, 105, 248–259.
- (31) Pérez-Magariño, S.; González-San José, M. L. Differentiation parameters of Ribera del Duero wines from other Spanish denominations of origin. *Food Sci. Technol. Int.* 2001, 7, 237–244.
- (32) Saiko, P.; Szakmary, A.; Jaeger, W.; Szekeres, T. Resveratrol and its analogs: Defense against cancer, coronary disease and neurodegenerative maladies or just a fad? *Mutat. Res.* 2008, 658, 68–94.
- (33) Vitrac, X.; Monti, J. P.; Vercauteren, J.; Deffieux, G.; Mérillon, J. M. Direct liquid chromatographic analysis of resveratrol derivatives and flavanonols in wines with absorbance and fluorescence detection. *Anal. Chim. Acta* 2002, 458, 103–110.
- (34) Monagas, M.; Gómez-Cordovés, C.; Bartolomé, B. Evaluation of different Saccharomyces cerevisiae strains for red winemaking. Influence on the anthocyanin, pyranoanthocyanin and non-anthocyanin phenolic content and colour characteristics of wines. Food Chem. 2007, 104, 814–823.
- (35) Fuhrman, B.; Lavy, A.; Aviram, M. Consumption of red wine with meals reduces the susceptibility of human plasma and low-density lipoprotein to lipid lipoperoxidation. Am. J. Clin. Nutr. 1995, 61, 549–554.
- (36) Carando, S.; Teissedre, P. L.; Pascual-Martinez, L.; Cabanis, J. C. Levels of flavan-3-ols in French wines. J. Agric. Food Chem. 1999, 47, 4161–4166.
- (37) Peña-Neira, A.; Duarte, A.; Hernández, T.; Estrella, I.; Dueñas, M.; Loyola, E. Effects of ripening stages and of plant vegetative vigor on the phenolic composition of grapes (*Vitis vinifera L.*) cv. Cabernet Sauvignon in the Maipo Valley (Chile). *Vitis* 2004, 43, 51–57.

- (38) Lenk, S.; Buschmann, C.; Pfündel, E. In vivo assessing flavonols in white grape berries (Vitis vinifera L. cv. Pinot Blanc) of different degrees of ripeness using chlorophyll fluorescence imaging. Funct. Plant Biol. 2007, 34, 1092–1104.
- (39) McDonald, M. S.; Hughes, M.; Burns, J.; Lean, M. E. J.; Matthews, D.; Crozier, A. Survey of the free and conjugated myricetin and quercetin content of red wines of different geographical origins. J. Agric. Food Chem. 1998, 46, 368–375.
- (40) Landrault, N.; Larronde, F.; Delaunay, J. C.; Castagnino, C.; Vercauteren, J.; Merillon, J. M.; Gasc, F.; Cros, G.; Teissedre, P. L. Levels of stilbene oligomers and astilbin in French varietal wines and in grapes during noble rot development. *J. Agric. Food Chem.* 2002, 50, 2046–2052.
- (41) Kallithraka, S.; Tsoutsouras, E.; Tzourou, E.; Lanaridis, P. Principal phenolic compounds in Greek red wines. Food Chem. 2006, 99, 784–793
- (42) Bogs, J.; Downey, M.; Harvey, J.; Ashton, A.; Tanner, G.; Robinson, S. Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves. *Plant Physiol.* 2005, 139, 652–663.
- (43) Pérez-Lamela, C.; García-Falcón, M. S.; Simal-Gándara, J.; Orriols-Fernández, I. Influence of grape variety, vine system and enological treatments on the colour stability of young red wines. *Food Chem.* 2007, 101, 601–606.
- (44) Otteneder, H.; Marx, R.; Zimmer, M. Analysis of anthocyanin composition of Cabernet sauvignon and Portuguese wines provides an objective assessment of the grape varieties. *Aust. J. Grape Wine Res.* 2004, 10, 3–7.
- (45) Von Baer, D.; Mardones, C.; Gutierrez, L.; Hofmann, G.; Becerra, J.; Hitschfeld, A.; Vergara, C. Varietal authenticity verification of Cabernet Sauvignon, Merlot and Carménère wines produced in Chile by their anthocyanin, flavonol and shikimic acid profiles. *Bull. O.I.V.* 2005, 78, 45–57.
- (46) Boss, P.; Davies, C.; Robinson, S. Anthocyanin composition and anthocyanin pathway gene expression in grapevine sports differing in berry skin colour. *Aust. J. Grape Wine Res.* **1996**, 2, 163–170.
- (47) Roggero, J.; Coen, S.; Ragonnet, B. High performance liquid chromatography survey on changes in pigment content in ripening grapes of Syrah. An approach to anthocyanin metabolism. Am. J. Enol. Vitic. 1986, 37, 77–83.
- (48) Miguel-Tabares, J. A.; Martín-Luis, B.; Carrillo-López, M.; Díaz-Díaz, E.; Darias-Martín, J. Effect of altitude on the winemaking potential of Listan negro and Ruby Cabernet cultivars in the south of Tenerife Island. J. Int. Sci. Vigne Vin 2002, 36, 185–194.
- (49) Catania, C.; Avagnina de del Monte, S. Las Regiones Vitícolas Argentinas. Rev. Agro Cuyo INTA 1994, 4, 78–84.
- (50) Mateus, N.; Marques, S.; Gonçalves, A.; Machado, J.; De Freitas, V. Proanthocyanidin composition of red *Vitis vinifera* varieties from the Douro Valley during ripening: influence of cultivation altitude. *Am. J. Enol. Vitic.* 2001, 52, 115–121.
- (51) Mori, K.; Sugaya, S.; Gemma, H. Decreased anthocyanin biosynthesis in grape berries grown under elevated night temperature condition. *Sci. Hortic.* 2005, 105, 319–330.

Received for review October 21, 2009. Revised manuscript received December 18, 2009. Accepted December 20, 2009. This research was supported by INTA (Projects PNFRU3191-3194) and GIE (Grupo de Investigación Enológica, Universidad de Chile) International Collaboration Project.